Skip to main content

Singular Value Decomposition and Least Squares Solutions

  • Chapter
Handbook for Automatic Computation

Part of the book series: Die Grundlehren der mathematischen Wissenschaften ((GL,volume 186))

Abstract

Let A be a real m×n matrix with mn. It is well known (cf. [4]) that

$$A = U\sum {V^T}$$
((1))

where

$${U^T}U = {V^T}V = V{V^T} = {I_n}{\text{ and }}\sum {\text{ = diag(}}{\sigma _{\text{1}}}{\text{,}} \ldots {\text{,}}{\sigma _n}{\text{)}}{\text{.}}$$

The matrix U consists of n orthonormalized eigenvectors associated with the n largest eigenvalues of AA T, and the matrix V consists of the orthonormalized eigenvectors of A T A. The diagonal elements of are the non-negative square roots of the eigenvalues of A T A; they are called singular values. We shall assume that

$${\sigma _1} \geqq {\sigma _2} \geqq \cdots \geqq {\sigma _n} \geqq 0.$$

Thus if rank(A)=r, σ r+1 = σ r+2=⋯=σ n = 0. The decomposition (1) is called the singular value decomposition (SVD).

Prepublished in Numer. Math. 14, 403–420 (1970).

The work of this author was in part supported by the National Science Foundation and Office of Naval Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Businger, P., Golub, G.: Linear least squares solutions by Householder transformations. Numer. Math. 7, 269 -276 (1965). Cf. I/8.

    Article  MathSciNet  MATH  Google Scholar 

  2. Forsythe, G.E., Henrici, P.: The cyclic Jacobi method for computing the principal values of a complex matrix. Proc. Amer. Math. Soc. 94, 1 -23 (I960).

    MathSciNet  MATH  Google Scholar 

  3. Forsythe, G.E., Henrici, P.Golub, G.: On the stationary values of a second-degree polynomial on the unit sphere. J. Soc. Indust. Appl. Math. 13, 1050–1068 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  4. Forsythe, G.E., Henrici, P.Moler, C. B.: Computer solution of linear algebraic systems. Englewood Cliffs, New Jersey: Prentice-Hall 1967.

    MATH  Google Scholar 

  5. Francis, J.: The Q R transformation. A unitary analogue to the L R transformation. Comput. J. 4, 265–271 (1961, 1962).

    Article  MathSciNet  MATH  Google Scholar 

  6. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. SIAM. Numer. Anal., Ser. B 2, 205 -224 (1965).

    MathSciNet  Google Scholar 

  7. Golub, G., Kahan, W. Least squares, singular values, and matrix approximations. Aplikace Matematiky 13, 44–51 (1968).

    MathSciNet  MATH  Google Scholar 

  8. Hestenes, M. R.: Inversion of matrices by biorthogonalization and related results. J. Soc. Indust. Appl. Math. 6, 51–90 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  9. Kogbetliantz, E. G.: Solution of linear equations by diagonalization of coefficients matrix. Quart. Appl. Math. 13, 123 -132 (1955).

    MathSciNet  MATH  Google Scholar 

  10. Kublanovskaja, V.N.: Some algorithms for the solution of the complete problem of eigenvalues.Ž . Vyisl. Mat. i Mat. Fiz. 1, 555 -570 (1961).

    MathSciNet  Google Scholar 

  11. Martin, R. S., Reinsch, C., Wilkinson, J.H.: Householder’s tridiagonalization of a symmetric matrix. Numer. Math. 11, 181 -195 (1968). Cf. II/2.

    Article  MathSciNet  MATH  Google Scholar 

  12. Wilkinson, J.: Error analysis of transformations based on the use of matrices of the form I -2w wH. Error in digital computation, vol. II, L.B. Rail, ed., p. 77 -101. New York: John Wiley & Sons, Inc. 1965.

    Google Scholar 

  13. Wilkinson, J Global convergence of tridiagonal QR algorithm with origin shifts. Lin. Alg. and its Appl. 1, 409–420 (1968).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Golub, G.H., Reinsch, C. (1971). Singular Value Decomposition and Least Squares Solutions. In: Bauer, F.L., Householder, A.S., Olver, F.W.J., Rutishauser, H., Samelson, K., Stiefel, E. (eds) Handbook for Automatic Computation. Die Grundlehren der mathematischen Wissenschaften, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86940-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86940-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86942-6

  • Online ISBN: 978-3-642-86940-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics