Advertisement

# Singular Value Decomposition and Least Squares Solutions

• G. H. Golub
• C. Reinsch
Chapter
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 186)

## Abstract

Let A be a real m×n matrix with mn. It is well known (cf. ) that
$$A = U\sum {V^T}$$
(1)
where
$${U^T}U = {V^T}V = V{V^T} = {I_n}{\text{ and }}\sum {\text{ = diag(}}{\sigma _{\text{1}}}{\text{,}} \ldots {\text{,}}{\sigma _n}{\text{)}}{\text{.}}$$
The matrix U consists of n orthonormalized eigenvectors associated with the n largest eigenvalues of AA T , and the matrix V consists of the orthonormalized eigenvectors of A T A. The diagonal elements of are the non-negative square roots of the eigenvalues of A T A; they are called singular values. We shall assume that
$${\sigma _1} \geqq {\sigma _2} \geqq \cdots \geqq {\sigma _n} \geqq 0.$$
Thus if rank(A)=r, σ r+1 = σ r+2=⋯=σ n = 0. The decomposition (1) is called the singular value decomposition (SVD).

## Keywords

Linear Algebra Matrix Versus Machine Precision Bell Telephone Laboratory Householder Transformation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
Businger, P., Golub, G.: Linear least squares solutions by Householder transformations. Numer. Math. 7, 269 -276 (1965). Cf. I/8.
2. 2.
Forsythe, G.E., Henrici, P.: The cyclic Jacobi method for computing the principal values of a complex matrix. Proc. Amer. Math. Soc. 94, 1 -23 (I960).
3. 3.
Forsythe, G.E., Henrici, P.Golub, G.: On the stationary values of a second-degree polynomial on the unit sphere. J. Soc. Indust. Appl. Math. 13, 1050–1068 (1965).
4. 4.
Forsythe, G.E., Henrici, P.Moler, C. B.: Computer solution of linear algebraic systems. Englewood Cliffs, New Jersey: Prentice-Hall 1967.
5. 5.
Francis, J.: The Q R transformation. A unitary analogue to the L R transformation. Comput. J. 4, 265–271 (1961, 1962).
6. 6.
Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. SIAM. Numer. Anal., Ser. B 2, 205 -224 (1965).
7. 7.
Golub, G., Kahan, W. Least squares, singular values, and matrix approximations. Aplikace Matematiky 13, 44–51 (1968).
8. 8.
Hestenes, M. R.: Inversion of matrices by biorthogonalization and related results. J. Soc. Indust. Appl. Math. 6, 51–90 (1958).
9. 9.
Kogbetliantz, E. G.: Solution of linear equations by diagonalization of coefficients matrix. Quart. Appl. Math. 13, 123 -132 (1955).
10. 10.
Kublanovskaja, V.N.: Some algorithms for the solution of the complete problem of eigenvalues.Ž . Vyisl. Mat. i Mat. Fiz. 1, 555 -570 (1961).
11. 11.
Martin, R. S., Reinsch, C., Wilkinson, J.H.: Householder’s tridiagonalization of a symmetric matrix. Numer. Math. 11, 181 -195 (1968). Cf. II/2.
12. 12.
Wilkinson, J.: Error analysis of transformations based on the use of matrices of the form I -2w wH. Error in digital computation, vol. II, L.B. Rail, ed., p. 77 -101. New York: John Wiley & Sons, Inc. 1965.Google Scholar
13. 13.
Wilkinson, J Global convergence of tridiagonal QR algorithm with origin shifts. Lin. Alg. and its Appl. 1, 409–420 (1968).

## Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

## Authors and Affiliations

• G. H. Golub
• C. Reinsch

There are no affiliations available