Advertisement

Mutation

  • Karl Esser
  • Rudolf Kuenen

Abstract

Mutations are discontinuous, heritable alterations of the genetic material. They do not result from sexual or parasexual processes; this is in contrast to recombination through which new genotypes are produced by the reassortment of entire chromosomes or by the exchange of chromosome segments. Mutations arise spontaneously as well as through the action of mutagenic agents.

Keywords

Spontaneous Mutation Mutagenic Agent Neurospora Crassa Aspergillus Nidulans Schizosaccharomyces Pombe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Alper, T., and P. Howard-Flanders: Role of oxygen in modifying the radiosensitivity of E. coli B. Nature (Lond.) 178, 978–979 (1956).Google Scholar
  2. Apirion, D.: Formal and physiological genetics of ascospore colour in Aspergillus nidulans. Genet. Res. 4, 276–283 (1963).Google Scholar
  3. Arditti, R. R., and G. Sermonti: Modification by manganous chloride of the frequency of mutation induced by nitrogen mustard. Genetics 47, 761–768 (1962).PubMedGoogle Scholar
  4. Atwood, K. C.: The role of lethal mutation in the killing of Neurospora conidia by ultraviolet light. Genetics 35, 95–96 (1950).Google Scholar
  5. and F. Mukai: Indispensable gene functions in Neurospora. Proc. nat. Acad. Sci. (Wash.) 39, 1027–1035 (1953a).Google Scholar
  6. High spontaneous incidence of a mutant of Neurospora crassa. Genetics 38, 654 (Abstr.) (1953b).Google Scholar
  7. Survival and mutation in Neurospora exposed at nuclear detonations. Amer. Naturalist 88, 295–314 (1954a).Google Scholar
  8. Homology patterns of x-ray-induced lethal mutations in Neurospora. Radiat. Res. 1, 125 (Abstr.) (1954b).Google Scholar
  9. Spontaneous mutations in dry Neurospora conidia. Heredity 13, 414 (Abstr.) (1959).Google Scholar
  10. Mutation. An introduction to research on mutagenesis, part I: Methods. Edinburgh 1962.Google Scholar
  11. Summary of the conference proceedings. I. Session on mutagenesis. Neurospora Newsletter 5, 8–11 (1964).Google Scholar
  12. C. B. J. Kilbey, and G. Kølmark: Differences in dose-effect curves for UV-induced reverse mutations at two different loci. Neurospora Newsletter 2, 4 (1962a).Google Scholar
  13. Response of two loci to interaction treatment. Neurospora Newsletter 2, 4 (1962b).Google Scholar
  14. and M. Westergaard: A discussion of mutagenic specificity. Abh. dtsch. Akad. Wiss. Berlin, Kl. Medizin 1, 116–123 (1960).Google Scholar
  15. and P. Alexander: Fundamentals of radiobiology. Deutsche Übersetzung herausgeg. von H. J. Maurer. Stuttgart 1958.Google Scholar
  16. and F. J. de Serres: Fixed genetic instability in Neurospora crassa. Genetics 48, 717–723 (1963).PubMedGoogle Scholar
  17. Bauch, R.: Experimentelle Mutationsauslösung bei Hefe und anderen Pilzen durch Behandlung mit Campher, Acenaphthen und Colchicin. Naturwissenschaften 29, 503–504 (1941a).Google Scholar
  18. Experimentell erzeugte Polyploidreihen bei der Hefe. Naturwissenschaften 29, 687–688 (1941b).Google Scholar
  19. Experimentelle Auslösung von Gigas-Mutationen bei der Hefe durch carcinogene Kohlenwasserstoffe. Naturwissenschaften 30, 263–264 (1942a).Google Scholar
  20. Bauch, H.: Über Beziehungen zwischen polyploidisierenden, carcinogenen und phytohormonalen Substanzen. Auslösung von Gigas-Mutationen bei der Hefe durch pflanzliche Wuchsstoffe. Naturwissenschaften 30, 420–421 (1942b).Google Scholar
  21. Experimentelle Mutationsauslösung bei der Hefe durch chemische Stoffe. Wschr. Brauerei, H. 1 u. 2 (1942c).Google Scholar
  22. Die Erblichkeit der durch Radiumbestrahlung bei der Hefe ausgelösten Riesenzellbildung. Arch. Mikrobiol. 13, 352–364 (1944).Google Scholar
  23. Die Konstanz der chemisch induzierten Gigas-Rassen der Hefe. Wiss. Z. Univ. Greifswald, math.-nat. Reihe 3, 123–158 (1953).Google Scholar
  24. Bautz, E., and E. Freese: On the mutagenic effect of alkylating agents. Proc. nat. Acad. Sci. (Wash.) 46, 1585–1594 (1960).Google Scholar
  25. Bautz-Freese, E.: Transitions and transversions induced by depurinating agents. Proc. nat. Acad. Sci. (Wash.) 47, 540–545 (1961).Google Scholar
  26. Beadle, G. W., and E. L. Tatum: Neurospora. II. Methods of producing and detecting mutations concerned with nutritional requirements. Amer. J. Bot. 32. 678–686 (1945).Google Scholar
  27. Beam, C. A.: The influence of ploidy and division stage on the anoxic protection of S aecharomyces cerevisiae against X-ray inactivation. Proc. nat. Acad. Sci. (Wash.) 41, 857–861 (1955).Google Scholar
  28. R. K. Mortimer, R. G. Wolfe, and C. A. Tobias: The relation of radioresistance to budding in S aecharomyces cerevisiae. Arch. Biochem. 49, 110–122 (1954).PubMedGoogle Scholar
  29. Benzer, S.: On the topology of the genetic fine structure. Proc. nat. Acad. Sci. (Wash.) 45, 1607–1620 (1959).Google Scholar
  30. On the topography of the genetic fine structure. Proc. nat. Acad. Sci. (Wash.) 47, 403–415 (1961).Google Scholar
  31. and E. Freese: Induction of specific mutations with 5-bromouracil. Proc. nat. Acad. Sci. (Wash.) 44, 112–119 (1958).Google Scholar
  32. Beraha, L., E. D. Garber, and O. Stromnaes: Genetics of phytopatho-genic fungi. X. Virulence of color and nutritionally deficient mutants of Penicillium italicum and Penicillium digitatum. Canad. J. Bot. 42, 429–436 (1964).Google Scholar
  33. Beukers, R., and W. Berends: Isolation and identification of the irradiation product of thymine. Biochim. biophys. Acta (Amst.) 41, 550–551 (1960).Google Scholar
  34. J. Ijlstra, and W. Berends: The effect of ultraviolet light on some components of the nucleic acids. II. In rapidly frozen solutions. Rec. Trav. chim. Pays-Bas 77, 729–732 (1958).Google Scholar
  35. The effect of ultraviolet light on some components of the nucleic acids. III. Apurinic acid. Rec. Trav. chim. Pays-Bas 78, 247–251 (1959).Google Scholar
  36. The effect of ultraviolet light on some components of the nucleic acids. VI. The origin of the ultraviolet sensitivity of deoxyribonucleic acid. Rec. Trav. chim. Pays-Bas 79, 101–104 (1960).Google Scholar
  37. Blau, M., u. K. Altenburger: Über einige Wirkungen von Strahlen. II. Z. Physik 12, 315–324 (1922).Google Scholar
  38. Bonnier, G., and K. G. Lüning: Studies on X-ray mutations in the white and forked loci of Drosophila melanogaster. I. A statistical analysis of mutation frequencies. Hereditas (Lund) 35, 163–189 (1949).Google Scholar
  39. Boone, D. M., J. F. Stauffer, M. A. Stahmann, and G. W. Keitt: Venturia inaequalis (Cke.) Wint. VII. Induction of mutants for studies on genetics, nutrition and pathogenicity. Amer. J. Bot. 43, 199–204 (1956).Google Scholar
  40. Brenner, S., L. Barnett, F. H. C. Crick, and A. Orgel: The theory of mutagenesis. J. molec. Biol. 3, 121–124 (1961).Google Scholar
  41. S. Benzer, and L. Barnett: Distribution of proflavin-induced mutations in the genetic fine structure. Nature (Lond.) 182, 983–985 (1958).Google Scholar
  42. Bresch, C.: Klassische und molekulare Genetik. Berlin-Göttingen-Heidelberg: Springer 1964.Google Scholar
  43. Brockman, H. E., and F. J. de Serres: Induction of ad-3 mutants of Neurospora crassa by 2-aminopurine. Genetics 48, 597–604 (1963).PubMedGoogle Scholar
  44. Buxton, E. W., and A. C. Hastie: Spontaneous and ultraviolet irradiation-induced mutants of Verticillium albo-atrum. J. gen. Microbiol. 28, 625–632 (1962).PubMedGoogle Scholar
  45. Caldas, L. R., et T. Constantin: Courbes de survie de levures haploides et diploides soumises aux rayons ultraviolets. C. R. Acad. Sci. (Paris) 232, 2356–2358 (1951).Google Scholar
  46. Catcheside, D. G.: Isolation of nutritional mutants of Neurospora crassa by filtration enrichment. J. gen. Microbiol. 11, 34–36 (1954).PubMedGoogle Scholar
  47. Clarke, C. H.: A case of mutagen specificity attributable to a plating medium effect. Z. Vererbungsl. 93, 435–440 (1962).Google Scholar
  48. Suppression by methionine of reversions to adenine independence in Schizosaccharomyces pombe. J. gen. Microbiol. 31, 353–363 (1963).PubMedGoogle Scholar
  49. Costello, W. P., E. A. Bevan, and M. W. Miller: A comparison of ultraviolet and ethyl methane sulphonate induced mutations of adenine loci in Saccharomyces cerevisiae. Proc. XI. Inter. Congr. Genetics 1, 60 (1963).Google Scholar
  50. Cox, B. S., and E. A. Bevan: Aneuploidy in yeast. New Phytologist 61, 342–355 (1962).Google Scholar
  51. Davidson, D.: Protection and recovery from ionizing radiation: Mechanisms in seeds and roots. In: A. Hollaender (edit.), Radiation protection and recovery, p. 175–211. Oxford-London-New York-Paris 1960.Google Scholar
  52. Day, P. R., and G. E. Anderson: Two linkage groups in Coprinus lagopus. Genet. Res. 2, 414–423 (1961).Google Scholar
  53. Demerec, M.: What is a gene? — Twenty years later. Amer. Naturalist 89, 5–20 (1955).Google Scholar
  54. Genetic structure of the Salmonella chromosome. Proc. X. Inter. Congr. Genetics 1, 55–62 (1959).Google Scholar
  55. Frequency of deletions among spontaneous and induced mutations in Salmonella. Proc. nat. Acad. Sci. (Wash.) 46, 1075–1079 (1960).Google Scholar
  56. E. L. Labrum, I. Galinsky, J. Hemmerly, A. M. M. Berrie, J. F. Hanson, I. Blomstrand, and Z. Demerec: Bacterial genetics. Carnegie Inst. Wash. Year Book 52, 210–221 (1953).Google Scholar
  57. E. L. Lahr, E. Balbinder, T. Miyake, J. Ishidsu, K. Mizobuchi, and B. Mahler: Bacterial genetics. Carnegie Inst. Wash. Year Book 59, 426–441 (1960).Google Scholar
  58. C. Mack, D. Mackey, and J. Ishidsu: Bacterial genetics. Carnegie Inst. Wash. Year Book 58, 433–439 (1959).Google Scholar
  59. and J. Sams: Induction of mutations in individual genes of Escherichia coli by low X-radiation. In: A. A. Buzzati-Traverso (edit.), Proc. Symposium on Immediate and Low-Level Effects of Ionizing Radiations, Venice, 1959, p. 238–291. Int. J. Radiat. Biol. Suppl. (1960).Google Scholar
  60. E. M. Witkin, E. L. Labrum, I. Galinsky, J. F. Hanson, H. Monsees, and T. H. Fetherston: Bacterial genetics. Carnegie Inst. Wash. Year Book 51, 193–205 (1952).Google Scholar
  61. Dessauer, F. R.: Über einige Wirkungen von Strahlen. I. Z. Physik 12, 38–47 (1922).Google Scholar
  62. Dick, S., and J. R. Raper: Origin of expressed mutations in Schizophyllum commune. Nature (Lond.) 189, 81–82 (1961).Google Scholar
  63. Doudney, C. O.: Macromolecular synthesis in bacterial recovery from ultraviolet light. Nature (Lond.) 184, 189–190 (1959).Google Scholar
  64. and F. L. Haas: Modification of ultraviolet-induced mutation frequency and survival in bacteria by post-irradiation treatment. Proc. nat. Acad. Sci. (Wash.) 44, 390–401 (1958).Google Scholar
  65. Mutation induction and macromolecular synthesis in bacteria. Proc. nat. Acad. Sci. (Wash.) 45, 709–722 (1959).Google Scholar
  66. Some biochemical aspects of the post-irradiation modification of ultraviolet-induced mutation frequency in bacteria. Genetics 45, 1481–1502 (1960).PubMedGoogle Scholar
  67. Draculic, M., and M. Errera: Chloramphenicol sensitive DNA synthesis in normal and irradiated bacteria. Biochim. biophys. Acta (Amst.) 31, 459–463 (1959).Google Scholar
  68. Dulbecco, R.: Photoreactivation. In: A. Hollaender (edit.), Radiation biology, vol.11: Ultraviolet and related radiations, p. 455–486. New York-Toronto-London 1955.Google Scholar
  69. Dunn, C. G., W. L. Campbell, H. Fram, and A. Hutchins: Biological and photo-chemical effects of high energy, electrostatistically produced roentgen rays and cathode rays. J. appl. Physiol. 19, 605–616 (1948).Google Scholar
  70. Dupin, M.: Mise en évidence d’une radiorésistance de S accharomyces cerevisiae au course de la méiose. C. R. Soc. Biol. (Paris) 257, 282–284 (1963).Google Scholar
  71. Emerson, R.: An experimental study of the life cycles and taxonomy of Allomyces. Lloydia 4, 77–144 (1941).Google Scholar
  72. Current trends of experimental research on the aquatic Phycomycetes. Ann. Rev. Microbiol. 4, 169–200 (1950).Google Scholar
  73. and C. M. Wilson: The significance of meiosis in Allomyces. Science 110, 86–88 (1949).PubMedGoogle Scholar
  74. Errera, M.: Biochemical aspects of mutagenesis. R. C. Ist. Sci. Univ. Camerino 3, 3–36 (1962).Google Scholar
  75. Esser, R., u. J. Straub: Genetische Untersuchungen an Sordaria macro-spora Auersw., Kompensation und Induktion bei genbedingten Entwicklungsdefekten. Z. Vererbungsl. 89, 729–746 (1958).PubMedGoogle Scholar
  76. Evans, H. J.: Chromosome aberrations induced by ionizing radiations. Int. Rev. Cytol. 13, 221–321 (1962).Google Scholar
  77. Fahmy, O. G., and M. J. Fahmy: Cytogenetic analysis of the action of carcinogens and tumour inhibitors in Drosophila melanogaster. V. Differential genetic response to the alkylating mutagens and x-radiation. J. Genet. 54, 146–164 (1956).Google Scholar
  78. Fincham, J. R. S., and P. R. Day: Fungal genetics. Oxford 1963.Google Scholar
  79. Franke, G.: Versuche zur Genomverdoppelung des Ascomyceten Podospora anserina (Ces.) Rehm. Z. Vererbungsl. 93, 109–117 (1962).Google Scholar
  80. Freese, E.: The difference between spontaneous and base-analogue induced mutations of phage T4 Proc. nat. Acad. Sci. (Wash.) 45, 622–633 (1959a).Google Scholar
  81. — On the molecular explanation of spontaneous and induced mutations. Brookhaven Symp. Biol. 12, 63–75 (1959b).Google Scholar
  82. — The specific mutagenic effect of base analogues on phage T4 J. molec. Biol. 1, 87–105 (1959c).Google Scholar
  83. — Molecular mechanism of mutations. In: J. H. Taylor, Molecular genetics, part I, p. 207–269. New York and London 1963.Google Scholar
  84. E. Bautz, and E. Bautz-Freese: The chemical and mutagenic specificity of hydroxylamine. Proc. nat. Acad. Sci. (Wash.) 47, 845–855 (1961).Google Scholar
  85. E. Bautz-Freese, and E. Bautz: Hydroxylamine as a mutagenic and inactivating agent. J. molec. Biol. 3, 133–143 (1961).PubMedGoogle Scholar
  86. Fries, N.: Experiments with different methods of isolating physiological mutations of filamentous fungi. Nature (Lond.) 159, 199 (1947).Google Scholar
  87. — The nutrition of fungi from the aspect of growth factor requirements. Trans. Brit. Mycol. Soc. 30, 118–134 (1948a).Google Scholar
  88. — Viability and resistance of spontaneous mutations in Ophiostoma representing different degree of heterotrophy. Physiol. plantarum (Kbh.) 1, 330–341 (1948b).Google Scholar
  89. — The production of mutations by caffeine. Hereditas (Lund) 36, 134–149 (1950).Google Scholar
  90. — Further studies on mutant strains of Ophiostoma which require guanine. J. biol. Chem. 200, 325–333 (1953).PubMedGoogle Scholar
  91. Fritz-Niggli, H.: Strahlenbiologie, Grundlagen und Ergebnisse. Stuttgart 1959.Google Scholar
  92. — Rückmutationen in Abhängigkeit vom Zellzustand und vom Agens der Vorwärtsinduktion. In: H. Fritz-Niggli (edit.), Strahlenwirkung und Milieu, p. 129–139. München u. Berlin 1962.Google Scholar
  93. — Induktion von Rückmutationen und Suppressoren mit Ribonukleinsäure bei Schizosaccharomyces pombe Naturwissenschaften 50, 530 (1963).Google Scholar
  94. Fuerst, R., and W. M. Skellenger: A Neurospora plate method for testing antimetabolites. Antibiot. and Chemother. 8, 76–80 (1958).Google Scholar
  95. Giles, N. H.; Studies on the mechanism of reversion in biochemical mutants of Neurospora crassa Cold Spr. Harb. Symp. quant. Biol. 16, 283–313 (1951).Google Scholar
  96. — Forward and back mutation at specific loci in Neurospora Brookhaven Symp. Biol. 8, 103–125 (1955).Google Scholar
  97. — Mutations at specific loci in Neurospora Proc. 10th Int. Congr. Genet. (Montreal) 1, 261–279 (1959).Google Scholar
  98. Glass, B., and L. E. Mettler: The oxygen effect in respect to point mutations in Drosophila melanogaster Proc. 10th Int. Congr. Genet. (Montreal) 2, 97–98 (1958).Google Scholar
  99. Glover, S. W.: A comparative study of induced reversion in Escherichia coli In: M. Demerec et al. (edits.), Genetic studies with bacteria, p. 121–136. Washington 1956.Google Scholar
  100. Goldschmidt, R. B.: Theoretical genetics. Berkeley and Los Angeles 1955.Google Scholar
  101. Gordon, W. W., and K. McKehnie: Colchicine induced autopolyploidy in Penicillium notaturn Lancet 1945, 47–49.Google Scholar
  102. Greer, S., and S. Zamenhof: Effect of 5-bromouracil in desoxyribonucleic acid of E. coli on sensitivity to ultraviolet irradiation. Amer. chem. Soc. Abstr. (131. meeting) 3C (1957).Google Scholar
  103. Grigg, G. W.: Competitive suppression and the detection of mutations in microbial populations. Aust. J. biol. Sci. 11, 69–84 (1957).Google Scholar
  104. —, and D. Sergeant: Compound loci and coincident mutation in Neurospora Z. Vererbungsl. 92, 380–388 (1961).PubMedGoogle Scholar
  105. Gutz, H.: Distribution of X-ray and nitrous acid-induced mutations in the genetic fine structure of the ad-7 locus of Schizosaccharomyces pombe Nature (Lond.) 191, 1125–1126 (1961).Google Scholar
  106. — Untersuchungen zur Feinstruktur der Gene ad-7 und ad-6 von Schizosaccharomyces pombe Lind. Habil.-Schr. der Technischen Universität Berlin, 111 S., 1963.Google Scholar
  107. Haas, F. L., and C. O. Doudney: A relation of nucleic acid and protein synthesis on ultraviolet induced mutation in bacteria. Proc. nat. Acad. Sci. (Wash.) 43, 871–883 (1957).Google Scholar
  108. — Mutation induction and expression in bacteria. Proc. nat. Acad. Sci. (Wash.) 45, 1620–1624 (1959).Google Scholar
  109. Haefner, K.: Zur Ploidiegradabhängigkeit strahleninduzierter Mutationsraten in einem System weitgehend homozygoter und isogener Saccharomyces-Stämme Z. Naturforsch. 19 b, 451–453 (1964a).Google Scholar
  110. — Über die UV-Induktion prototropher Mutanten bei Saccharomyces Biophysik 1, 413–417 (1964 b).Google Scholar
  111. —, u. W. Laskowski: Zur Induktion prototropher Saccharomyces-Mutsniten durch ultraviolettes Licht in Abhängigkeit von Dosis und Nachbehandlung. Z. Naturforsch. 18b, 301–309 (1963).Google Scholar
  112. Hainz, H., u. R.W. Kaplan: Einfluß der Temperatur während der UV-Bestrahlung auf Inaktivierung und Mutation von Serratia marcescens sowie des Bakteriophagen Kappa Z. allg. Mikrobiol. 3, 113–125 (1963).Google Scholar
  113. Harm, W., u. W. Stein: Zur Deutung von Maxima und Sättigungs-Effekten bei Dosis-Effekt-Kurven für strahleninduzierte Mutationen. Z. Naturforsch. 11b, 89–105 (1956).Google Scholar
  114. Harold, F. M., and Z. Z. Ziporin: Synthesis of protein and of DNA in Escherichia coli irradiated with ultraviolet light. Biochim. biophys. Acta (Amst.) 29, 439–440 (1958).Google Scholar
  115. Harris, R. J. C.: The initial effects of ionizing radiations on cells. London and New York 1961.Google Scholar
  116. Hawthorne, D. C.: A deletion in yeast and its bearing on the structure of the mating locus. Genetics 48, 1727–1729 (1963).PubMedGoogle Scholar
  117. Hayes, W.: The genetics of bacteria and their viruses. Studies in basic genetics and molecular biology. Oxford 1964.Google Scholar
  118. Heagy, F. O., and J. A. Roper: Desoxyribonuoleic acid content of haploid. and diploid Aspergillus conidia. Nature (Lond.) 170, 713–714 (1952). Heslot, H.: Contribution à l’étude cytogénétique et génétique des Sordariacées. Rev. Cytol. et Biol. végét. 19, Suppl. 2, 1–235 (1958).Google Scholar
  119. Schizosaccharomyces pombe: un nouvel organisme pour l’étude de la mutagenèse chimique. Abh. dtsch. Akad. Wiss. Berlin, Kl. Medizin 1, 98–105 (960).Google Scholar
  120. — Étude quantitative de réversions biochimiques induites chez la levure Schizosaccharomyces pombe par des radiations et des substances radio-mimétiques. Abh. dtsch. Akad. Wiss. Berlin, Kl. Medizin 1, 193–228 (1962).Google Scholar
  121. Hollaender, A. (edit.): Radiation biology. New York-Toronto-London 1954 (vol. 1),Google Scholar
  122. 1955 (vol. 2),Google Scholar
  123. 1956 (vol. 3).Google Scholar
  124. —, and C. W. Emmons: Wave length dependence of mutation production in the ultraviolet with special emphasis on fungi. Cold Spr. Harb. Symp. quant. Biol. 9, 179–186 (1941).Google Scholar
  125. Holliday, R.: A new method for the identification of biochemical mutants of micro-organisms. Nature (Lond.) 178, 987 (1956).Google Scholar
  126. — The genetics of Ustilago maydis Genet. Res. 2, 204–230 (1961).Google Scholar
  127. — Mutation and replication in Ustilago maydis Genet. Res. 3, 472–486 (1962).Google Scholar
  128. Horowitz, N. H., M. B. Houlahan, M. G. Hungate, and B. Wright: Mustard gas mutations in Neurospora Science 104, 233–234 (1946).Google Scholar
  129. Howard-Flanders, P.: Physical and chemical mechanisms in the injury of cells by ionizing radiations. Biol. med. Physics 6, 544–603 (1958).Google Scholar
  130. — Primary physical and chemical processes in radio biology. In: Radiation Biology and Cancer, p. 29–40. Texas 1959.Google Scholar
  131. Howe, H. B., and C. E. Terry: Genetic studies of resistance to chemical agents in Neurospora crassa Canad. J. Genet. Cytol. 4, 447–452 (1962).PubMedGoogle Scholar
  132. Ishikawa, T.: Genetic studies of ad-8 mutants in Neurospora crassa I. Genetic fine structure of the ad-8 locus. Genetics 47, 1147–1161 (1962).PubMedGoogle Scholar
  133. Ishitani, C., Y. Ikeda, and K. Sakaguchi: Hereditary variation and genetic recombination in Koji-molds (Aspergillus oryzae und A. sojae) VI. Genetic recombination in heterozygous diploids. J. gen. appl. Microbiol. 2, 401–430 (1956).Google Scholar
  134. Jagger, J.: Photoreactivation. Bact. Rev. 22, 99–138 (1958).PubMedGoogle Scholar
  135. — Photoreactivation. In: A. Hollaender (edit.), Radiation protection and recovery, p. 352–377. Oxford-London-New York-Paris 1960.Google Scholar
  136. Jensen, K. A., J. Kirk, and M. Westergaard: Biological action of “mustard gas” compounds. Nature (Lond.) 166, 1019 (1950).Google Scholar
  137. G. Kolmark, and M. Westergaard: Chemically induced mutations in Neurospora Cold Spr. Harb. Symp. quant. Biol. 16, 245–261 (1951).Google Scholar
  138. G. Kølmark, and M. Westergaard: Back-mutations in Neurospora crassa induced by diazomethane. Hereditas (Lund) 35, 521–525 (1949).Google Scholar
  139. Kada, T., C. O. Doudney, and F. L. Haas: Some biochemical factors in X-ray induced mutation in bacteria. Genetics 45, 995 (Abstr.) (1960).Google Scholar
  140. — Some biochemical factors in X-ray induced mutation in bacteria. Genetics 46, 683–702 (1961).PubMedGoogle Scholar
  141. Käfer, E.: The processes of spontaneous recombination in vegetative nuclei of Aspergillus nidulans Genetics 46, 1581–1609 (1961).PubMedGoogle Scholar
  142. — Translocations in stock strains of Aspergillus nidulans Genetica 33, 59–68 (1962).Google Scholar
  143. — Origin and pedigree of a VI–VII translocation in Aspergillus nidulans Microbial Genetics Bull. 19, 12–13 (1963 a).Google Scholar
  144. — Radiation effects and mitotic recombination in Aspergillus nidulans Genetics 48, 27–45 (1963b).PubMedGoogle Scholar
  145. —, and A. Chen: UV-induced mutations and mitotic crossing-over in dormant and germinating conidia of Aspergillus Microbial Genetics Bull. 20, 8–9 (1964).Google Scholar
  146. Kakar, S. N., F. K. Zimmermann, and R. P. Wagner: Reversion behavior of isoleucine-valine mutants of yeast. Mutation Research 1, 381–386 (1964).Google Scholar
  147. Kanazir, D., and M. Errera: Alterations of intracellular deoxyribonucleic acid and their biological consequence. Cold Spr. Harb. Symp. quant. Biol. 21, 19–29 (1956).Google Scholar
  148. Kaplan, R. W.: Neuere Entwicklungen in der Mikrobengenetik. Zbl. Bakt., I. Abt. Orig. 160, 181–193 (1953).Google Scholar
  149. — Dose-effect curves of s-mutation and killing in Serratia marces cens Arch. Mikrobiol. 24, 60–79 (1956).PubMedGoogle Scholar
  150. — Genetik der Mikroorganismen. Fortschr. Bot. 19, 288–323 (1957).Google Scholar
  151. — Strahlengenetik der Mikroorganismen. In: H. Schinz (Hrsg.), Strahlenbiologie, Nuklearmedizin und Krebsforschung, p. 109–156. Stuttgart: Georg Thieme 1959.Google Scholar
  152. — Genetik der Mikroorganismen. Fortschr. Bot. 24, 286–313 (1962a).Google Scholar
  153. — Einfluß von Kälte oder Trockenheit während sowie von Behandlungen mit Biochemikalien nach der UV-Bestrahlung auf die Mutationsauslösung bei Serratia Abh. dtsch. Akad. Wiss. Berlin, Kl. Medizin 1, 167–170 (1962b).Google Scholar
  154. — Photoreversion von vier Gruppen UV-induzierter Mutationen zur Giftresistenz in nichtphotoreaktivierbaren E. coli Photochem. and Photobiol. 2, 461–470 (1963).Google Scholar
  155. —, H. Beckmann, and W. Rüger: Different “spectra” of mutant types by extracellular treatment of phage Kappa with differing mutagens. Nature (Lond.) 199, 932–933 (1963).Google Scholar
  156. —, u. W. Gunkel: Reversion der Mutationen und Reaktivierung durch sichtbares Licht sowie verschiedene Salzlösungen nach UV-Bestrahlung von Serratia Arch. Mikrobiol. 35, 63–91 (1960).PubMedGoogle Scholar
  157. —, and C. Kaplan: Influence of water content on UV-induced s-mutation and killing in Serratia Exp. Cell Res. 11, 378–392 (1956).PubMedGoogle Scholar
  158. Kaudewitz, F.: Inaktivierende und mutagene Wirkung salpetriger Säure auf Zellen von Escherichia coli Z. Naturforsch. 14b, 528–537 (1959a).Google Scholar
  159. — Linear transfer of a potentially mutant state in bacteria. Nature (Lond.) 183, 871–873 (1959b).Google Scholar
  160. — Production of bacterial mutants with nitrous acid. Nature (Lond.) 183, 1829–1830 (1959c).Google Scholar
  161. Kelner, A.: Effect of visible light on the recovery of Streptomyces conidia from ultraviolet irradiation injury. Proc. nat. Acad. Sci. (Wash.) 35, 73–79 (1949).Google Scholar
  162. Kelner, A.: Growth, respiration and nucleic acid synthesis in ultraviolet-irradiated and photoreactivated Escherichia coli. J. Bact. 65, 252–262 (1953).PubMedGoogle Scholar
  163. Kihlman, B. A.: Biochemical aspects of chromosome breakage. Advanc. Genet. 10, 1–59 (1961).Google Scholar
  164. Kilbey, B. J.: Mutagenic studies with Aspergillus nidulans. Microbial Genetics Bull. 19, 14 (1963 a).Google Scholar
  165. Kilbey, B. J. The influence of temperature of the ultraviolet induced revertant frequencies of two auxotrophs of Neurospora crassa. Z. Vererbungsl. 94, 385–391 (1963b).PubMedGoogle Scholar
  166. Kimball, R. F., N. Gaither, and S.M. Wilson: Reduction of mutation by postirradiation treatment after ultraviolet and various kinds of ionizing radiations. Radiat. Res. 10, 490–497 (1959).PubMedGoogle Scholar
  167. Knapp, E., A. Reuss, O. Risse u. H. Schreiber: Quantitative Analyse der mutationsauslösenden Wirkung monochromatischen UV-Lichtes. Naturwissenschaften 27, 304 (1939).Google Scholar
  168. H. Schreiber, u. H. Schreiber: Quantitative Analyse der mutationsauslösenden Wirkung monochromatischen UV-Lichtes in Spermatozoiden von Sphaerocarpus. Proc. 7th Internat. Genet. Congr., Edinburgh. Suppl., J. Genet. 175–176 (1939).Google Scholar
  169. Kniep, H.: Über den Generationswechsel von Allomyces. Z. Bot. 22, 433–441 (1930).Google Scholar
  170. Kølmark, G.: Differential response to mutagens as studied by the Neuvospora reverse mutation test. Hereditas (Lund) 39, 270–276 (1953).Google Scholar
  171. Kølmark, G. Mutagenic properties of certain esters of inorganic acids investigated by the Neuvospova back-mutation test. C. R. Lab. Carlsberg, Sér. physiol. 26, 205–220 (1956).Google Scholar
  172. Kølmark, G., and N. H. Giles: Comparative studies of monoepoxides as inducers of reverse mutations in Neurospova. Genetics 40, 890–902 (1955).PubMedGoogle Scholar
  173. N. H. Giles, and B. J. Kilbey: An investigation into the mutagenic after-effect of butadiene diepoxide using Neurospova crassa. Z. Vererbungsl. 93, 356–365 (1962).Google Scholar
  174. B. J. Kilbey, and M. Westergaard: Induced back-mutations in a specific gene of Neuvospova cvassa. Hereditas (Lund) 35, 490–506 (1949).Google Scholar
  175. M. Westergaard Validity of the Neuvospova back-mutation test. Nature (Lond.) 169, 626 (1952).Google Scholar
  176. M. Westergaard Further studies on chemically induced reversions at the adenine locus of Neuvospova. Hereditas (Lund) 39, 209–224 (1953).Google Scholar
  177. Kostoff, D.: Gigantism in Penicillium, experimentally produced. Bull. chambre de culture nationale, Sér. Biologie, agriculture et silviculture Sofia 1, 240 (1946).Google Scholar
  178. Kubitschek, H. E., and H. E. Bendigkeit: Delay in the appearance of caffeine-induced T5 resistance in Eschevichia coli. Genetics 43, 647–661 (1958).PubMedGoogle Scholar
  179. H. E. Bendigkeit Latent mutants in chemostats. Genetics 46, 105–122 (1961).PubMedGoogle Scholar
  180. Laskowski, W.: Inaktivierungsversuche mit homozygoten Hefestämmen verschiedenen Ploidiegrades. I. Aufbau homozygoter Stämme und Dosiseffektkurven für ionisierende Strahlen, UV und organische Peroxyde. Z. Naturforsch. 15b, 495–506 (1960a).Google Scholar
  181. Laskowski, W. Die hefeartigen Pilze. V. Entwicklungscyclen und Erbverhalten der Hefen. Die Hefen 1, 178–208 (1960b).Google Scholar
  182. Laskowski, W. Inaktivierungsversuche mit homozygoten Hefestämmen verschiedenen Ploidiegrades. VI. Über den Aufbau weitestgehend isogener, homozygoter penta- und hexaploider Stämme sowie den Einfluß bestimmter imitierter Allele auf die Strahlenresistenz. Z. Naturforsch. 17b, 93–108 (1962a).Google Scholar
  183. Laskowski, W. Strahleninaktivierung von Sacchavomyces in Abhängigkeit von Ploidie-grad und Genotyp. Abh. dtsch. Akad. Wiss. Berlin, Kl. Medizin 1, 171–177 (1962b).Google Scholar
  184. Laskowski, W., and K. Haefner: Determination of radiation-induced mutation rates of recessive lethal alleles in Sacchavomyces. Nature (Lond.) 200, 795–796 (1963).Google Scholar
  185. K. Haefner, u. W. Stein: Inaktivierungsversuche mit homozygoten Hefestämmen verschiedenen Ploidiegrades. IL Mikroskopische Beobachtungen nach Inaktivierung mit ionisierenden Strahlen, UV und organischen Peroxyden. Z. Naturforsch. 15b, 604–612 (1960).Google Scholar
  186. Latarjet, R., et B. Ephrussi: Courbes de survie de levures haploides et diploides soumises aux rayons X. C. Rend. Acad. Sci. (Paris) 229, 306–308 (1949).Google Scholar
  187. Lea, D. E.: Actions of radiations on living cells, 2. Aufl. Cambridge 1956.Google Scholar
  188. Lea, D. E., and C. A. Coulson: The distribution of the numbers of mutants in bacterial populations. J. Genet. 49, 264–285 (1949).Google Scholar
  189. Leben, C., D. M. Boone, and G. W. Keitt: Ventuvia inaequalis (Cke.) Wint. IX. Search for mutants resistent to fungicides. Phytopathology 45, 467–472 (1955).Google Scholar
  190. Lederberg, J., and E. M. Lederberg: Replica plating and indirect selection of bacterial mutants. J. Bact. 63, 399–406 (1952).PubMedGoogle Scholar
  191. Lein, J., H. K. Mitchell, and M. B. Houlahan: A method for the selection of biochemical mutants of Neuvospova. Proc. nat. Acad. Sci. (Wash.) 34, 435–442 (1948).Google Scholar
  192. Lerman, L. S.: The structure of the DNA-acridine complex. Proc. nat. Acad. Sci. (Wash.) 49, 94–102 (1963).Google Scholar
  193. Lester, H. E., and S. R. Gross: Efficient method for selection of auxotrophic mutants of Neurospora. Science 129, 572 (1959).PubMedGoogle Scholar
  194. Leupold, U.: Tetraploid inheritance in Saccharomyces. J. Genet. 54, 411– 426 (1956a).Google Scholar
  195. Leupold, U.: Tetrad analysis of segregation in autotetraploids. J. Genet. 54, 427–439 (1956b).Google Scholar
  196. Leupold, U.: Some data on polyploid inheritance in Schizosaccharomyces pombe. C. R. Lab. Carlsberg, Sér. physiol. 26, 221–251 (1956c).Google Scholar
  197. Leupold, U.: Studies on recombination in Schizosaccharomyces pombe. Cold Spr. Harb. Symp. quant. Biol. 23, 161–170 (1958).Google Scholar
  198. Leupold, U.: Intragene Rekombination und allele Komplementierung. Arch. Klaus-Stift. Vererb.-Forsch. 26, 89–117 (1961).Google Scholar
  199. Lieb, M.: Deoxyribonucleic acid synthesis and ultraviolet-induced mutation. Biochim. biophys. Acta (Amst.) 37, 155–157 (1960).Google Scholar
  200. Lindegren, C. C., and G. Lindegren: X-ray and ultraviolet induced mutations in Neurospora, I. X-ray mutations; II. Ultraviolet mutations. J. Hered. 32, 405–412 (1941).Google Scholar
  201. G. Lindegren Tetraploid Saccharomyces. J. gen. Bact. 5, 885–893 (1951).Google Scholar
  202. Lissouba, P.: Mise en evidence d’une unité génétique polarisée et essai d’analyse d’un cas d’interférence négative. Ann. Sci. nat. bot. 44, 641–720 (1960).Google Scholar
  203. Lissouba, P., J. Mousseau, G. Rizet, and J. L. Rossignol: Fine structure of genes in the Ascomycete Ascobolus immersus. Advanc. Genet. 11, 343–380 (1962).Google Scholar
  204. Loprieno, N., G. Zetterberg, R. Guglielminetti, and E. Michel: The lethal and mutagenic effects of N-nitroso-N-methylurethane and N-nitroso-N-ethylurethane in Colletotrichum coccodes. Mutation Research 1, 37–44 (1964).Google Scholar
  205. Lorkiewicz, Z., and W. Szybalski: Genetic effects of halogenated thymidine analogs incorporated during thymidylate synthetase inhibition. Biochem. biophys. Res. Commun. 2, 413–418 (1960).Google Scholar
  206. Lu, B.C.: Polyploidy in the basidiomycete Cyathus stercoreus. Amer. J. Bot. 51, 343–347 (1964).Google Scholar
  207. Lu, B.C. and H. J. Brodie: Chromosomes of the fungus Cyathus. Nature (Lond.) 194, 606 (1962).Google Scholar
  208. Lucre, W. H., and A. Sarachek: X-ray inactivation of polyploid Saccharomyces. Nature (Lond.) 171, 1014–1015 (1953).Google Scholar
  209. Luria, S. E., and M. Delbrück: Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).PubMedGoogle Scholar
  210. Mackintosh, M. E., and R. H. Pritchard: The production and replica plating of micro-colonies of Aspergillus nidulans. Genet. Res. 4, 320–322 (1963).Google Scholar
  211. Magni, G. E.: Mutation rates during the meiotic process in yeasts. In: F. H. Sobels (edit.), Repair from genetic radiation damage and differential radiosensitivity in germ cells. Proc. Internat. Symp. Leiden 1962, p. 77–85. Oxford-London-New York-Paris 1963.Google Scholar
  212. Magni, G. E., R. C. v. Borsel, and S. Sora: Mutagenic action during meiosis and antimutagenic action during mitosis by 5-aminoacridine in yeast. Mutation Research 1, 227–230 (1964).Google Scholar
  213. Maling, B. D.: Replica plating and rapid ascus collection of Neurospora. J. gen. Microbiol. 23, 257–259 (1960).PubMedGoogle Scholar
  214. Malling, H., H. Miltenburger, M. Westergaard, and K. G. Zimmer: Differential response of a double mutant — adenineless, inositolless — in Neurospora crassa to combined treatment by ultra-violet radiation and chemicals. Int. J. Radiat. Biol. 1, 328–343 (1959).PubMedGoogle Scholar
  215. Marcou, D.: Sur l’influence du mode d’association des gènes sur les propriétés de certains hétérocaryotes du Podospora anserina. C. R. Acad. Sci. (Paris) 256, 768–770 (1963).Google Scholar
  216. Markert, C. L.: Radiation-induced nutritional and morphological mutants of Glomerella. Genetics 37, 339–352 (1952).PubMedGoogle Scholar
  217. Markert, C. L. Lethal and mutagenic effects of ultraviolet radiation in Glomerella conidia. Exp. Cell Res. 5, 427–435 (1953).PubMedGoogle Scholar
  218. Markert, C. L. Response of Glomerella conidia to irradiation by X-rays and fast neutrons. Papers Mich. Acad. Sci. 91, 27–31 (1956).Google Scholar
  219. Marquardt, H., R. Schwaier u. F. K. Zimmermann: Nicht-Mutagenität von Nitrosaminen bei Neurospora crassa. Naturwissenschaften 50, 135–136 (1963).Google Scholar
  220. Marquardt, H., F. K. Zimmermann u. R. Schwaier: Die Wirkung krebsauslösender Nitrosamine und Nitrosamide auf das Adenin-6–45-Rückmutations-system von Saccharomyces cerevisiae. Z. Vererbungsl. 95, 82–96 (1964).PubMedGoogle Scholar
  221. McClintock, B.: Neurospora. I. Preliminary observations of the chromosomes of Neurospora crassa. Amer. J. Bot. 32, 671–678 (1945).Google Scholar
  222. McElroy, W. D., J. E. Cushing, and H. Miller: The induction of biochemical mutations in Neurospora crassa by nitrogen mustard. J. cell. comp. Physiol. 30, 331–346 (1947).Google Scholar
  223. H. Miller, and B. Glass (edits.): The chemical basis of heredity. Baltimore 1957.Google Scholar
  224. Metzger, K.: Der Einfluß des Wassergehaltes auf Inaktivierung und Mutabilität von Serratia marcescens durch UV- und Röntgenbestrahlung. Z. allg. Mikrobiol. 1, 29–45 (1960).Google Scholar
  225. Mitchell, J. S., B. E. Holmes, and C. L. Smith (edits.): Progress in radio-biology. Proc. IV. Internat. Conf. radiobiology, Cambridge 1955. Edinburgh and London 1956.Google Scholar
  226. Mitchell, M. B., and H. K. Mitchell: The selective advantage of an adenineless double mutant over one of the single mutants involved. Proc. nat. Acad. Sci. (Wash.) 36, 115–119 (1950).Google Scholar
  227. — — Mitchell, M. B., and H. K. Mitchell: Observations on the behaviour of suppressors in Neurospora. Proc. nat. Acad. Sci. (Wash.) 38, 205–214 (1952).Google Scholar
  228. Morpurgo, G.: A new method of estimating forward mutation in fungi: resistance to 8-azaguanine and p-fluorophenylalanine. Sci. Rep. 1st. sup. Sanità (Roma) 2, 9–12 (1962).Google Scholar
  229. Morrow, J.: Dispensable and indispensable genes in Neurospora. Science 144, 307–308 (1964).PubMedGoogle Scholar
  230. Mortimer, R. K.: The relative radiation-resistance of haploid, diploid, triploid and tetraploid yeast cells. Med. and Health Physics Quart. p. 39–44. 1952.Google Scholar
  231. Müller, H. J.: Artificial transmutation of the gene. Science 66, 84–87 (1927).PubMedGoogle Scholar
  232. Müller, H. J.: The production of mutations by X-rays. Proc. nat. Acad. Sci. (Wash.) 14, 714–726 (1928).Google Scholar
  233. Mundry, K. W., u. A. Gierer: Die Erzeugung von Mutationen des Tabakmosaikvirus durch chemische Behandlung seiner Nucleinsäure in vitro. Z. Vererbungsl. 89, 614–630 (1958).PubMedGoogle Scholar
  234. Nadson, G. A., et G. S. Fillipov: Influence des rayons X sur la sexualité et la formation des mutantes chez les champignons inférieurs (Mucoracéae). C. R. Soc. Biol. (Paris) 93, 473–475 (1925).Google Scholar
  235. G. S. Fillipov: De la formation de nouvelles races stables chez champignons inférieur sous l’influence des rayons x. C. R. Soc. Biol. (Paris) 186, 1566–1568 (1928).Google Scholar
  236. Nagai, S.: Interferences between some induces of the respiration-deficient mutation in yeast. Exp. Cell Res. 27, 19–24 (1962).PubMedGoogle Scholar
  237. Nakada, D., E. Strelzoff, R. Rudner, and F. J. Ryan: Is DNA replication a necessary condition for mutation? Z. Vererbungsl. 91, 210–213 (1960).PubMedGoogle Scholar
  238. Newcombe, H. B., and J. F. McGregor: Dose-response relationships in radiation induced mutations. Saturation effects in Streptomyces. Genetics 39, 619–627 (1954).PubMedGoogle Scholar
  239. Norman, A.: The nuclear role in the ultraviolet inactivation of Neurospora conidia. J. cell. comp. Physiol. 44, 1–10 (1954).Google Scholar
  240. Ogur, M., S. Minckler, and D. O. McClary: Desoxyribonucleic acids and the budding cycle in the yeasts. J. Bact. 66, 642–645 (1953).PubMedGoogle Scholar
  241. G. Lindegren, and C. C. Lindegren: The nucleic acids in a polyploid series of Saccharomyces. Arch. Biochem. 40, 175–184 (1952).PubMedGoogle Scholar
  242. Oppenoorth, W. F. F.: Modification of the hereditary character of yeast by investigation of cell-free extracts. Eur. Brewery Convention 1960, p. 180–207.Google Scholar
  243. Orgel, A., and S. Brenner: Mutagenesis of bacteriophage T4 by acridines. J. molec. Biol. 3, 762–768 (1961).PubMedGoogle Scholar
  244. Oster, R. H.: Results of irradiating Saccharomyces with monochromatic ultra-violet-light. I. Morphological and respiratory changes. J. gen. Physiol. 18, 71–88 (1934a).PubMedGoogle Scholar
  245. — Results of irradiating Saccharomyces with monochromatic ultra-violet-light. II. The influence of modifying factors. J. gen. Physiol. 18, 243 – 250 (1934b).PubMedGoogle Scholar
  246. — Results of irradiating Saccharomyces with monochromatic ultra-violet-light. III. The absorption of ultra-violet-light energy by yeast. J. gen. Physiol. 18, 251–254 (1934c).PubMedGoogle Scholar
  247. — and W. A. Arnold: Results of irradiating Saccharomyces with monochromatic ultra-violet-light. IV. Relation of energy to observed inhibitory effects. J. gen. Physiol. 18, 351–355 (1934).Google Scholar
  248. Pittman, D., E. Shult, A. Roshanmanesh, and C. C. Lindegren: The procurement of biochemical mutants of Saccharomyces by the synergistic effect of ultraviolet radiation and 2,6-diamino purine. Canad. J. Microbiol. 9, 103–109 (1963).Google Scholar
  249. Pomper, S., and K. C. Atwood: Radiation studies on fungi. In: A. Hollaender (edit.), Radiation biology, vol.11: Ultraviolet and related radiations, p. 431–453. New York-Toronto-London 1955.Google Scholar
  250. Pontecorvo, G.: Auxanographic techniques in biochemical genetics. J. gen. Microbiol. 3, 122–126 (1949).PubMedGoogle Scholar
  251. —, and J. A. Roper: Genetic analysis without sexual reproduction by means of polyploidy in Aspergillus nidulans. J. gen. Microbiol.: Proceedings 6, 7–8 (1952).Google Scholar
  252. — Resolving power of genetic analysis. Nature (Lond.) 178, 83–84 (1956).Google Scholar
  253. L. M. Hemmons, K. D. MacDonald, and A. W. J. Bufton: The genetics of Aspergillus nidulans. Advanc. Genet. 5, 141–238 (1953).Google Scholar
  254. Rajewsky, B.: Strahlendosis und Strahlenwirkung, 2. Aufl. Stuttgart 1956.Google Scholar
  255. Ranganathan, B., and M. K. Subramaniam: Studies on the mutagenic action of chemical and physical agencies on yeasts. I. Induction of polyploidy by diverse agencies. J. Indian. Inst. Sci., Sect. A 32, pt. 4, 51–72 (1950).Google Scholar
  256. Reaume, S. E., and E. L. Tatum: Spontaneous and nitrogen mustard induced nutritional deficiencies in Saccharomyces cerevisiae. Arch. Biochem. 22, 331–338 (1949).PubMedGoogle Scholar
  257. Reissig, J. L.: Replica plating with Neurospora crassa. Microbial Genetics Bull. 14, 31–32 (1956).Google Scholar
  258. — Forward and back mutation in the pyr-3 region of Neurospora. I. Mutations from arginine dependence to prototrophy. Genet. Res. 1, 356–374 (1960).Google Scholar
  259. — Induction of forward mutants in the pyr-3 region of Neurospora. J. gen. Microbiol. 30, 317–325 (1963a).PubMedGoogle Scholar
  260. — Spectrum of forward mutants in the pyr-3 region of Neurospora. J. gen. Microbiol. 30, 327–337 (1963b).PubMedGoogle Scholar
  261. Revell, S.: The accurate estimation of chromatid breakage and its relevance to a new interpretation of chromatid aberrations induced by ionizing radiations. Proc. roy. Soc. B 150, 563–589 (1959).Google Scholar
  262. Rieger, R.: Die Genommutationen (Ploidiemutationen). In: H. Stubbe (Hrsg.), Genetik: Grundlagen, Ergebnisse und Probleme in Einzeldarstellungen. Jena 1963.Google Scholar
  263. —, u. H. Böhme: Strahleninduzierte Mutagenese — Gesichtspunkte des Genetikers. Abh. dtsch. Akad. Wiss. Berlin, Kl. Medizin 1, 38–62 (1962).Google Scholar
  264. —, u. A. Michaelis: Über die radiomimetische Wirkung von Äthylalkohol bei Vicia faba. Abh. dtsch. Akad. Wiss. Berlin, Kl. Medizin 1, 54–65 (1960).Google Scholar
  265. — Die Auslösung von Chromosomenaberrationen bei Vicia faba durch chemische Agentien. Kulturpflanze 10, 212–292 (1962).Google Scholar
  266. Rizet, G., P. Lissouba et J. Mousseau: Sur l’interférence négative au sein d’une série d’allèles chez Ascobolus immer sus. C. R. Soc. Biol. (Paris) 11, 1967–1970 (1960a).Google Scholar
  267. — — — Les mutations d’ascospore chez l’ascomycète Ascobolus immerses et l’analyse de la structure fine des gènes. Bull. Soc. franç. Physiol. végétale 6, 175–193 (1960b).Google Scholar
  268. Roberts, C.: Methods in yeast genetics. Meth. med. Res. 3, 37–50 (1950).Google Scholar
  269. — A replica plating technique for the isolation of nutritionally exacting mutants of a filamentous fungus (Aspergillus nidulans). J. gen. Microbiol. 20, 540 (1959).PubMedGoogle Scholar
  270. Röbbelen, G.: Cytogenetic Fortschr. Bot. 22, 316–346 (1960).Google Scholar
  271. — Cytogenetic Fortschr. Bot. 24, 314–359 (1962).Google Scholar
  272. — Cytogenetic Fortschr. Bot. 25, 393–417 (1963).Google Scholar
  273. Roman, H.: A system selective for mutations affecting the synthesis of adenine in yeast. C. R. Lab. Carlsberg, Sér. physiol. 26, 299–314 (1955).Google Scholar
  274. D.C. Hawthorne, and H.C. Douglas: Polyploidy in yeast and its bearing on the occurrence of irregularic genetic ratios. Proc. nat. Acad. Sci. (Wash.) 37, 79–84 (1951).Google Scholar
  275. M. M. Phillips, and S. M. Sands: Studies of polyploid Saccharomyces. I. Tetraploid segregation. Genetics 40, 546–561 (1955).PubMedGoogle Scholar
  276. Roper, J. A.: Production of heterozygous diploids in filamentous fungi. Experientia (Basel) 8, 14 (1952).Google Scholar
  277. —, and E. Käfer: Acriflavine-resistant mutants of Aspergillus nidulans. J. gen. Microbiol. 16, 660–667 (1957).PubMedGoogle Scholar
  278. Rosen, R.: An hypothesis of Freese and the DNA-protein coding problem. Bull. math. Biophys. 23, 305–318 (1961).Google Scholar
  279. Royes, J.: The production of mosaic mutations in Neurospora crassa. Neurospora Newsletter 1, 5–6 (1962).Google Scholar
  280. Rudner, R.: Mutation as an error in base pairing. Biochem. biophys. Res. Commun. 3, 275–280 (1960).PubMedGoogle Scholar
  281. —, and E. Balbinder: Reversions induced by base analogues in Salmonella typhimurium. Nature (Lond.) 186, 180 (1960).Google Scholar
  282. Rupert, C. S: Photoenzymatic repair of ultraviolet damage in DNA. I. Kinetics of the reaction. J. gen. Physiol. 45, 703–741 (1962).PubMedGoogle Scholar
  283. Ryan, F. J.: Selected methods of Neurospora genetics. Meth. med. Res. 3, 51–75 (1950).Google Scholar
  284. — Natural mutation in non dividing bacteria. Trans. N.Y. Acad. Sci., Ser. 2, 19, 515–517 (1957).Google Scholar
  285. —, and K. Kiritani: Effect of temperature on natural mutation in Escherichia coli. J. gen. Microbiol. 20, 644–653 (1959).PubMedGoogle Scholar
  286. D. Nakada, and M. J. Schneider: Is DNA replication a necessary condition for spontaneous mutation? Z. Vererbungsl. 92, 38–41 (1961).PubMedGoogle Scholar
  287. R. Rudner, T. Nagata, and Y. Kitani: Bacterial mutation and the synthesis of macromolecules. Z. Vererbungsl. 90, 148–158 (1959).PubMedGoogle Scholar
  288. M. Schwartz, and P. Fried: The direct enumeration of spontaneous and induced mutations in bacteria. J. Bact. 69, 552–557 (1955).PubMedGoogle Scholar
  289. Sager, R., and F. J. Ryan: Cell heredity. An analysis of the mechanisms of heredity at the cellular level. New York and London 1961.Google Scholar
  290. Sansome, H. R.: Induction of gigas forms of Penicillium notatum by treatment with camphor vapours. Nature (Lond.) 157, 843 (1946).Google Scholar
  291. — Spontaneous mutation in standard and “gigas’’ forms of Pénicillium notatum strain 1249 B 21. Transact. Brit. Mycol. Soc. 32, 305–314 (1949).Google Scholar
  292. — Camphor-induced gigas forms in Neurospora. Transact. Brit. Mycol. Soc. 39, 67–78 (1956).Google Scholar
  293. M. Demerec, and A. Hollaender: Quantitative irradiation experiments with Neurospora crassa. I. Experiments with X-rays. Amer. J. Bot. 32, 218–226 (1945).Google Scholar
  294. —, and B. J. Harris: The use of camphor-induced polyploidy to determine the place of meiosis in fungi. Microbial Genetics Bull. 19, 20–21 (1963).Google Scholar
  295. Sarachek, A.: X-ray inactivation of Saccharomyces during the budding cycle. Experientia (Basel) 10, 377–378 (1954a).Google Scholar
  296. — A comparative study of the retardation of budding and cellular inactivation by ultraviolet radiation in polyploid Saccharomyces with special reference to photoreactivation. Cytologia (Tokyo) 19, 77–85 (1954b).Google Scholar
  297. —, and W. H. Lucre: Ultraviolet inactivation of polyploid Saccharomyces. Arch. Biochem. 44, 271–279 (1953).PubMedGoogle Scholar
  298. Scholes, G., and J. Weiss: Organic hydroxy-hydroperoxides: a class of hydroperoxides formed under the influence of ionizing radiation. Nature (Lond.) 185, 305–306 (1960).Google Scholar
  299. Schull, W. J. (edit.): Mutations. Second conference on genetics. Ann. Arbor (Mich.): The University of Michigan Press 1962.Google Scholar
  300. Schuster, H.: Die Reaktionsweise der Desoxyribonucleinsäure mit salpetriger Säure. Z. Naturforsch. 15b, 298–304 (1960).Google Scholar
  301. Scott, W. M.: Pyrimidine analogs and the mutation of Neurospora crassa. Biochem. biophys. Res. Commun. 15, 147–150 (1964).Google Scholar
  302. Serres, F. J. de: Studies with purple adenine mutants in Neurospora crassa. III. Reversion of X-ray-induced mutants. Genetics 43, 187–206(1958).PubMedGoogle Scholar
  303. — Genetic analysis of the structure of the ad-3 region of Neurospora crassa by means of irreparable recessive lethal mutations. Genetics 50, 21–30 (1964).Google Scholar
  304. —, and H. G. Kolmark: A direct method for determination of forward mutation rates in Neurospora crassa. Nature (Lond.) 182, 1249–1250 (1958).Google Scholar
  305. —, and R. S. Osterbind: Estimation of the relative frequencies of X-ray-induced viable and recessive lethal mutations in the ad-3 region of Neurospora crassa. Genetics 47, 793–796 (1962).Google Scholar
  306. Shamoian, C. A., A. Canzanelli, and J. Melrose: Back-mutation of a Neurospora crassa mutant by a nucleic acid complex from the wild strain. Biochim. biophys. Acta (Amst.) 47, 208–211 (1961).Google Scholar
  307. Sharma, A. K., and A. Sharma: Spontaneous and chemically induced chromosome breaks. Int. Rev. Cytol. 10, 101–136 (1960).Google Scholar
  308. Shockley, T., and E. L. Tatum: A search for genetic transformation in Neurospora crassa. Biochim. biophys. Acta (Amst.) 61, 567–572 (1962).Google Scholar
  309. Siddiqi, O. H.: Mutagenic action of nitrous acid on Aspergillus nidulans. Genet. Res. 3, 303–314 (1962).Google Scholar
  310. Singleton, J. R.: A mechanism intrinsic to heterozygous inversions affecting observed recombination frequencies in adjacent regions. Genetics 49, 541–560 (1964).PubMedGoogle Scholar
  311. Skovstedt, A.: Induced camphor mutations in yeast. C. R. Trav. Lab. Carlsberg, Sér. physiol. 24, 249–262 (1948).Google Scholar
  312. Smith, H. H., and A. M. Srb: Induction of mutations with β-propiolactone. Science 114, 490–492 (1951).PubMedGoogle Scholar
  313. Sörgel, G.: Über heteroploide Mutanten bei Allomyces Kniepii. Nachr. Ges. Wiss. Göttingen, Fachgr. VI, 2, 155–170 (1936).Google Scholar
  314. — Untersuchungen über den Generationswechsel von Allomyces. Z. Bot. 31, 401–446 (1937).Google Scholar
  315. Sommermeyer, K.: Quantenphysik der Strahlenwirkung in Biologie und Medizin. Leipzig 1952.Google Scholar
  316. Sost, H.: Über die Determination des Generationswechsels von Allomyces arbusculo, (Butl.) (Polyploidieversuche). Arch. Protistenk. 100, 541–564 (1955).Google Scholar
  317. Sparrow, A. H., J. P. Binnington, and V. Pond: Bibliography on effects of ionizing radiations on plants: 1896–1955. New York 1958.Google Scholar
  318. Sparrow jr., F. K.: Aquatic Phycomycetes exclusive of the Saprolegniaceae and Pythium. Ann Arbor (Mich.): The University of Michigan Press 1943.Google Scholar
  319. Spencer, W. P., and C. Stern: Experiments to test the validity of the linear r-dose mutation frequency relation in Drosophila at low dosage. Genetics 33, 43–74 (1948).Google Scholar
  320. Stadler, L. J., and F. M. Uber: Genetic effects of UV radiation in maize. IV. Comparison of monochromatic radiations. Genetics 27, 84–118 (1942).PubMedGoogle Scholar
  321. Stahl, F. W.: The mechanics of inheritance. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1964.Google Scholar
  322. Stapleton, G. E., and A. Hollaender: Mechanism of lethal and mutagenic action of ionizing radiations on Aspergillus terreus. II. Use of modifying agents and conditions. J. cell. comp. Physiol. 39 (Suppl. 1), 101–113 (1952).Google Scholar
  323. — and F. L. Martin: Mechanism of lethal and mutagenic action of ionizing radiation on Aspergillus terreus. I. Relationship of relative biological efficiency to ion density. J. cell. comp. Physiol. 39 (Suppl. 1), 87–100 (1952).Google Scholar
  324. Stein, W.: Inaktivierungsversuche mit homozygoten Hefestämmen verschiedenen Ploidiegrades. V. Treffertheoretische Betrachtungen. Z. Naturforsch. 17b, 179–187 (1962).Google Scholar
  325. —, u. W. Laskowski: Zur mathematischen Analyse der Strahleninaktivierung mikrobiologischer Objekte verschiedenen Ploidiegrades unter Berücksichtigung genetischer und nichtgenetischer Anteile. Z. Naturforsch. 13b, 651–657 (1958).Google Scholar
  326. — Zur mathematischen Analyse der Strahleninaktivierung homozygoter Hefestämme verschiedenen Ploidiegrades. Naturwissenschaften 46, 88–89 (1959).Google Scholar
  327. — Inaktivierungsversuche mit homozygoten Hefestämmen verschiedenen Ploidiegrades. IV. Quantitative Deutung unter Berücksichtigung genetischer und nichtgenetischer Anteile. Z. Naturforsch. 15b, 734–743 (1960).Google Scholar
  328. Stent, G. S.: Molecular biology of bacterial viruses. San Francisco and London 1963.Google Scholar
  329. Stevens, C. M., and A. Mylroie: Production and reversion of biochemical mutants of Neurospora crassa with mustard compounds. Amer. J. Bot. 40, 424–429 (1953).Google Scholar
  330. Straub, J.: Wege zur Polyploidie. Berlin 1950.Google Scholar
  331. — Cytogenetik. Fortschr. Bot. 20, 236–256 (1958).Google Scholar
  332. Strauss, B. S.: An outline of chemical genetics. Philadelphia and London 1960.Google Scholar
  333. Strelzoff, E.: Identification of base pairs involved in mutations induced by base analogues. Biochem. biophys. Res. Commun. 5, 384–388 (1961).Google Scholar
  334. — DNA synthesis and induced mutations in the presence of 5-bromouracil. II. Induction of mutations. Z. Vererbungsl. 93, 301–318 (1962).Google Scholar
  335. Strigini, P., C. Rossi, and G. Sermonti: Effects of desintegration of incorporated 32P in Aspergillus nidulans. J. molec. Biol. 7, 683–699 (1963).PubMedGoogle Scholar
  336. Stubbe, H. (Hrsg.): Chemische Mutagenese. Erwin-Baur-Gedächtnisvorlesungen I, 1959. Abh. dtsch. Akad. Wiss. Berlin, Kl. Medizin 1, Berlin 1960.Google Scholar
  337. — Strahleninduzierte Mutagenese. Erwin-Baur-Gedächtnisvorlesungen II, 1961. Abh. dtsch. Akad. Wiss. Berlin, Kl. Medizin 1, Berlin 1962.Google Scholar
  338. Subramaniam, M. K.: Induction of polyploidy in Saccharomyces cerevisiae. Curr. Sci. 14, 234 (1945).Google Scholar
  339. —, and B. Ranganathan: Induction of mutations in yeast by low temperatures. Sci. and Culture (Calcutta) 13, 102–105 (1947).Google Scholar
  340. — Chromosome constitution and characteristics of giant colonies in yeasts. Proc. nat. Inst. Sci. India 14, 279–283 (1948).Google Scholar
  341. Suyama, Y., K. D. Munkers, and V. W. Woodward: Genetic analyses of the pyr-3 locus of Neurospora crassa: the bearing of recombination and gene conversion upon intra-allelic linearity. Genetica 30, 293–311 (1959).PubMedGoogle Scholar
  342. Swanson, C. P.: Cytology and cytogenetics. Prentice-Hall 1957.Google Scholar
  343. Szybalski, W., and Z. Lorkiewicz: On the nature of the principal target of lethal mutagenic radiation effects. Abh. dtsch. Akad. Wiss. Berlin, Kl. Medizin 1, 63–71 (1962).Google Scholar
  344. Takahashi, T.: Filtration methods for selecting auxotrophic mutants of flocculent type yeast. Rep. Kihara Inst. Biol. Res. 10, 57–59 (1959).Google Scholar
  345. Tatum, E. L., R. W. Barratt, N. Fries, and D. M. Bonner: Biochemical mutant strains of Neurospora produced by physical and chemical treatment. Amer. J. Bot. 37, 38–46 (1950).Google Scholar
  346. Tector, M. A., and E. Käfer: Radiation-induced chromosomal aberrations and lethals in Aspergillus nidulans. Science 136, 1056–1057 (1962).PubMedGoogle Scholar
  347. Tessman, I.: The induction of large deletions by nitrous acid. J. molec. Biol. 5, 442–445 (1962).PubMedGoogle Scholar
  348. Thaysen, A. C., and M. Morris: Preparation of a giant strain of Torulopsis utilis. Nature (Lond.) 152, 526–528 (1943).Google Scholar
  349. Timofeeff-Ressovsky, N. W., u. K. G. Zimmer: Das Trefferprinzip in der Biologie. In: Biophysik, Bd. 1. Leipzig 1947.Google Scholar
  350. — u. M. Delbrück: Über die Natur der Genmutationen und der Genstruktur. Nachr. Ges. Wiss. Göttingen, Kl. Biol. 1, 190–245 (1935).Google Scholar
  351. Vaharu, T.: Modification in ultra-violet-induced mutation frequency in Neurospora crassa. Genetics 46, 247–256 (1961).PubMedGoogle Scholar
  352. Vielmetter, W., u. H. Schuster: Die Basenspezifität bei der Induktion von Mutationen durch salpetrige Säure im Phagen T2. Z. Naturforsch. 15b, 304–311 (1960).Google Scholar
  353. Wacker, A., H. Dellweg u. E. Lodemann: Strahlengenetische Veränderungen der Nucleinsäuren. Angew. Chem. 73, 64–65 (1960).Google Scholar
  354. — u. D. Weinblum: Strahlenchemische Veränderung der Bakterien-Desoxyribonucleinsäure in vivo. Naturwissenschaften 47, 477 (1961).Google Scholar
  355. Wallace, B., and T. Dobzhansky: Radiation, genes, and man. New York 1959.Google Scholar
  356. Warshaw, S. D.: Effect of ploidy in photoreactivation. Proc. Soc. exp. Biol. (N.Y.) 79, 268–271 (1952).Google Scholar
  357. Weatherwax, R. S., and O. E. Landman: Ultraviolet light-induced mutation and deoxyribonucleic acid synthesis in Escherichia coli. J. Bact. 80, 528–535 (1960).PubMedGoogle Scholar
  358. Weinfurtner, F., u. G. A. Voerkelius: Das Absterben von Hefen unter der Einwirkung von Noxen in Abhängigkeit vom Ploidiegrad. Z. Naturforsch. 10b, 257–267 (1955).Google Scholar
  359. Westergaard, M.: Chemical mutagenesis in relation to the concept of the gene. Experientia (Basel) 13, 224–234 (1957).Google Scholar
  360. — Chemical mutagenesis as a tool in macromolecular genetics. Abh. dtsch. Akad. Wiss. Berlin, Kl. Medizin 1, 30–40 (1960).Google Scholar
  361. Wilkie, D.: The induction by monochromatic UV light of respiratory-deficient mutants in aerobic and anaerobic cultures of yeast. J. molec. Biol. 7, 527–533 (1963).PubMedGoogle Scholar
  362. Wilson, C. M.: Meiosis in Allomyces. Bull. Torrey bot. Club 79, 139–160 (1952).Google Scholar
  363. Winge, Ö.: The segregation in the ascus of Saccharomyces Ludwigii. C. R. Lab. Carlsberg, Sér. physiol. 24, 223–231 (1947).Google Scholar
  364. —, and O. Laustsen: Saccharomyces Ludwigii, a balanced heterozygote. C. R. Lab. Carlsberg, Sér. physiol. 22, 357–370 (1939).Google Scholar
  365. Winkler, U.: „Hot spots“ oder „Brennpunkte“ von Mutationsereignissen. Umschau 11, 342–345 (1963).Google Scholar
  366. Witkin, E. M.: Time, temperature and protein synthesis: A study of ultraviolet-induced mutation in bacteria. Cold Spr. Harb. Symp. quant. Biol. 21, 123–140 (1956).Google Scholar
  367. — Post-irradiation metabolism and the timing of ultraviolet-induced mutations in bacteria. Proc. 10th Int. Congr. Genet. (Montreal) 1, 280–299 (1959).Google Scholar
  368. — Modification of mutagenesis initiated by ultraviolet light through post-treatment of bacteria with basic dyes. J. cell. comp. Physiol. 58 (Suppl. 1), 135–144 (1961).PubMedGoogle Scholar
  369. Wolff, S.: Chromosome aberrations. In: A. Hollaender (edit.), Radiation protection and recovery, p. 157–174. Oxford-London-New York-Paris 1960.Google Scholar
  370. — (edit.): Radiation-induced chromosome aberrations. New York and London 1963.Google Scholar
  371. Woodward, V. W.: Mutation rates of several gene loci in Neurospora. Proc. nat. Acad. Sci. (Wash.) 42, 752–758 (1956).Google Scholar
  372. J. R. de Zeeuw, and A. M. Srb: The separation and isolation of particular biochemical mutants of Neurospora by differential germination of conidia, followed by filtration and selective plating. Proc. nat. Acad. Sci. (Wash.) 40, 192–200 (1954).Google Scholar
  373. Zamenhof, S.: The chemistry of heredity. Springfield 1959.Google Scholar
  374. — Mutations. Symp. Amer. J. Med. 34, 609–626 (1963).Google Scholar
  375. —, and S. Greer: Heat as an agent producing high frequency of mutations and unstable genes in Escherichia coli. Nature (Lond.) 182, 611–613 (1958).Google Scholar
  376. Zelle, M. R., J. E. Ogg, and A. Hollaender: Photoreactivation of induced mutation and inactivation of Escherichia coli exposed to various wave lengths of monochromatic ultraviolet radiation. J. Bact. 75, 190–198 (1958).PubMedGoogle Scholar
  377. Zetterberg, G.: The mutagenic effect of 8-ethoxycaffein, caffein and dimethylsulfate in the Ophiostoma back-mutation test. Hereditas (Lund) 46, 279–311 (1960a).Google Scholar
  378. — The mutagenic effect of N-nitroso-N-methylurethan in Ophiostoma multiannulatum. Exp. Cell Res. 20, 659–661 (1960b).PubMedGoogle Scholar
  379. — A specific and strong mutagenic effect of N-nitroso-N-methylurethan in Ophiostoma. Hereditas (Lund) 47, 295–303 (1961).Google Scholar
  380. — Genetic influence on the back-mutation rate in biochemical mutant strains of Ophiostoma. Exp. Cell Res. 27, 560–569 (1962).PubMedGoogle Scholar
  381. —, and N. Fries: Spontaneous back-mutations in Ophiostoma multiannulatum. Hereditas (Lund) 44, 556–558 (1958).Google Scholar
  382. Zimmer, K. G.: The development of quantum biology during the last decade. Acta radiol. (Stockh.) 46, 595–602 (1956).Google Scholar
  383. Zirkle, R. E., and C. A. Tobias: Effects of ploidy and linear energy transfer on radiobiological survival curves. Arch. Biochem. 48, 282–306 (1953).Google Scholar

References which have come to the authors’ attention after conclusion of the German manuscript A I, 1

  1. Berliner, M. D., and P. W. Neurath: The band forming rhythm of Neurospora mutants. J. cell. comp. Physiol. 65, 183–193 (1965a).Google Scholar
  2. — The rhythms of three clock mutants of Ascobolus immer sus. Mycologia (N.Y.) 57, 809–817 (1965 b).Google Scholar
  3. Green, G. J.: A color mutation, its inheritance, and the inheritance of pathogenicity in Puccinia graminis pers. Canad. J. Bot. 42, 1653–1664 (1964).Google Scholar
  4. Sussman, A. S., R. J. Lowry, and T. Durkee: Morphology and genetics of a periodic colonial mutant of Neurospora crassa. Amer. J. Bot. 51, 243–252 (1964).Google Scholar
  5. Yu-Sun, C. C. C.: Biochemical and morphological mutants of Ascobolus immersus. Genetics 50, 987–998 (1964).PubMedGoogle Scholar

A I, 2

  1. Metzenberg, R. L., M. S. Kappy, and R. W. Parson: Irreparable mutations and ethionine resistance in Neurospora. Science 145, 1434–1435 (1964).PubMedGoogle Scholar

A I, 3

  1. Apirion, D.: The two-way selection of mutants and revertants in respect to acetate utilization and resistance to fluoro-acetate in Aspergillus nidulans. Genet. Res. 6, 317–329 (1965).PubMedGoogle Scholar
  2. Balázs, O., u. J. Roppert: Auxanographisches System zur Ermittlung des Auxotrophiegrades sowie des Nährstoffbedarfes bei polyauxotrophen Mutanten von Mikroorganismen. Arch. Mikrobiol. 50, 298–320 (1965).PubMedGoogle Scholar
  3. Dee, J.: Genetic analysis of actidione-resistant mutants in themyxomycete Physarum polycephalum Schw. Genet. Res. 8, 101–110 (1966).PubMedGoogle Scholar
  4. Lilly, L. J.: An investigation of the suitability of the suppressors of meth-1 in Aspergillus nidulans for the study of induced and spontaneous mutation. Mutation Res. 2, 192–195 (1965).PubMedGoogle Scholar
  5. Lingens, F., u. O. Oltmanns: Erzeugung und Untersuchung biochemischer Mangelmutanten von Saccharomyces cerevisiae. Z. Naturforsch. 19b, 1058–1065 (1964).Google Scholar
  6. Megnet, R.: A method for the selection of auxotrophic mutants of the yeast Schizosaccharomyces pombe. Experientia (Basel) 20, 320–321 (1964).Google Scholar
  7. — Alkoholdehydrogenasemutanten von Schizosaccharomyces pombe. Path. Microbiol. 28, 50–57 (1965 a).Google Scholar
  8. — Screening of auxotrophic mutants of Schizosaccharomyces pombe with 2-deoxyglucose. Mutation Res. 2, 328–331 (1965b).PubMedGoogle Scholar
  9. Oltmanns, O., u. F. Lingens: Versuche zur Anreicherung von Hefe-Mangelmutanten, insbesondere mit Penicillin. Z. Naturforsch. 21b, 266–273 (1966).Google Scholar
  10. Warr, J. R., and J. A. Roper: Resistance to various inhibitors in Aspergillus nidulans. J. gen. Microbiol. 40, 273–281 (1965).PubMedGoogle Scholar
  11. Yu-Sun, C. C. C.: Biochemical and morphological mutants of Ascobolus immersus. Genetics 50, 987–998 (1964).PubMedGoogle Scholar

A II, 1

  1. Haefner, K., u. W. Laskowski: Zur Induktion prototropher Saccharomyces-Mutanten durch ultraviolettes Licht in Abhängigkeit von Dosis und Nachbehandlung. Z. Naturforsch. 18b, 301–309 (1962).Google Scholar
  2. — Zum Inaktivierungskriterium für Einzelzellen unter besonderer Berücksichtigung der Teilungsfähigkeit Röntgen- und UV-bestrahlter Saccharomyces-Zellen verschiedenen Ploidiegrades. Int. J. Radiat. Biol. 9, 545–558 (1965).Google Scholar
  3. Holliday, R.: Radiation sensitive mutants of Ustilago maydis. Mutation Res. 2, 557–559 (1965).PubMedGoogle Scholar
  1. James, A. P., M. M. MacNutt, and P. M. Morse: The influence of dose on the spectrum of radiation-induced mutants affecting a quantitative character in yeast. Genetics 52, 21–29 (1965).PubMedGoogle Scholar
  2. Käfer, E., and T. L. Chen: Translocations and recessive lethals in Aspergillus by ultra-violet light and gamma rays. Canad. J. Genet. Cytol. 6, 249–254 (1964).Google Scholar
  3. Kilbey, B. J., and F. J. de Serres: Quantitative und qualitative aspects of photoreactivation of premutational ultraviolet damage at the ad-3 loci of Neurospora crassa. Mutation Res. 4, 21–29 (1967).PubMedGoogle Scholar
  4. Kivi, E. I., and A. P. James: The influence of environment on radiation-induced mutations affecting growth. Hereditas 48, 247–263 (1962).Google Scholar
  5. Laser, H.: Production by X-rays of petite colonies in yeast and their radio-sensitivity. Nature (Lond.) 203, 314–315 (1964).Google Scholar
  6. Laskowski, W.: Der α-Effekt, eine Korrelation zwischen Paarungstypkonstitution und Strahlenresistenz bei Hefen. Zbl. Bakt. 184, 251–258 (1962).Google Scholar
  7. Moustacchi, E.: Induction by physical and chemical agents of mutations for radioresistance in Saccharomyces cerevisiae. Mutation Res. 2, 403–412 (1965).PubMedGoogle Scholar
  8. Müller, I., and A. P. James: The influence of genetic background on the frequency and the direction of radiation-induced mutations affecting a quantitative character. Genetics 46, 1721–1733 (1961).PubMedGoogle Scholar
  9. Schwartz, L.J., and J. F. Stauffer: Three methods of assessing the mutagenic action of ultraviolet radiation on the fungus Emericellopsis glabra. Appl. Microbiol. 14, 105–109 (1966).PubMedGoogle Scholar
  10. Serres, F. J. de: Impaired complementation between non-allelic mutations in Neurospora. Symp. on Genes and Chromosomes — Structure and Function, Buenos Aires 1964.Google Scholar
  11. Webber, B. B., and F. J. de Serres: Induction kinetics and genetic analysis of X-ray-induced mutations in the ad-3 region of Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 53, 430–437 (1965).Google Scholar
  12. Witkin, E. M.: Radiation-induced mutations and their repair. Science 152, 1345–1353 (1966).PubMedGoogle Scholar
  13. Yamasaki, T., T. Ito, and Y. Matsudaira: The whole- and fractional-colony mutation induced by soft X-rays in yeast. Japan. J. Genet. 39, 147–150 (1964).Google Scholar

A II, 2

  1. Haefner, K.: Zum Mechanismus der Entstehung auxotropher Zellen in heterozygoten Saccharomyces- Stämmen nach UV- und Röntgen-Bestrahlung. Z. Vererbungsl. 98, 82–90 (1966).PubMedGoogle Scholar
  2. Heslot, H.: Les mécanismes moléculaires de la mutagene et la nature des mutations. Ann. Amélior. Plantes 15, 111–157 (1965).Google Scholar

A II, 3

  1. Bacchetti, S., R. Elli, R. Falchetti, F. Mauro, and A. Sacchi: Recovery from X-ray-induced sub-lethal damage in Saccharomyces cerevisiae cells of different ploidy. Int. J. Radiat. Biol. 10, 213–221 (1966).Google Scholar
  2. Heslot, H.: Les mécanismes moléculaires de la mutagenèse et la nature des mutations. Ann. Amélior. Plantes 15, 111–157 (1965).Google Scholar
  3. Klingmüller, W.: Der Einfluß des Wassergehaltes auf Inaktivierung und Mutationsrate von Röntgen- und gammabestrahlten Neurospora crassa-Conidien. Z. Vererbungsl. 96, 116–127 (1965).Google Scholar
  4. Sugimura, T., and H. Tanooka: Photoreactivation of hemeprotein lacking yeast. Biochim. biophys. Acta (Amst.) 136, 154–155 (1967).Google Scholar

A II, 4

  1. Calvori, C., and G. Morpurgo: Analysis of induced mutations in Aspergillus nidulans. I. UV- and HNO2-induced mutations. Mutation Res. 2, 145–151 (1966).Google Scholar
  2. Heslot, H.: Les mécanismes moléculaires de la mutagenèse et la nature des mutations. Ann. Amélior. Plantes 15, 111–157 (1965).Google Scholar
  3. Takamori, Y., E. R. Lochmann u. W. Laskowski: Inaktivierungsversuche mit homozygoten Hefestämmen verschiedenen Ploidiegrades. IX. Nucleinsäuregehalt und Nucleinsäuresynthese nach Röntgenbestrahlung. Z. Naturforsch. 21b, 960–967 (1966).Google Scholar
  4. Witkin, E. M.: Radiation-induced mutations and their repair. Science 152, 1345–1353 (1966).PubMedGoogle Scholar

A III, 1

  1. Abbondandolo, A., and N. Loprieno: Forward mutation studies with iV-nitroso-iV-methyl-urethane and N-nitroso-N-ethylurethane in Schizosaccharomyces pombe. Mutation Res. 4, 31–36 (1967).PubMedGoogle Scholar
  2. Ball, C., and J. A. Roper: Studies on the inhibition and mutation of Aspergillus nidulans by acridines. Genet. Res. Camb. 7, 207–221 (1966).Google Scholar
  3. Brockman, H. E., and W. Goben: Mutagenicity of a monofunctional alkylating agent derivative of acridine in Neurospora. Science 147, 750–751 (1965).PubMedGoogle Scholar
  4. Guglielminetti, R., S. Bonatti, and N. Loprieno: The mutagenic activity of N-mtroso-N-methylurethane and N-nitroso-N-ethylurethane in Schizosaccharomyces pombe. Mutation Res. 3, 152–157 (1966).PubMedGoogle Scholar
  5. Lindegren, G., Y. L. Hwang, Y. Oshima, and C. C. Lindegren: Genetical mutants induced by ethyl methanesulfonate in Saccharomyces. Canad. J. Genet. Cytol. 7, 491–499 (1965).PubMedGoogle Scholar
  6. Lingens, F., u. O. Oltmanns: Über die mutagene Wirkung von 1-Nitroso-3-nitro-1-methyl-guanidin (NNMG) auf Saccharomyces cerevisiae. Z. Naturforsch. 21b, 660–663 (1966).Google Scholar
  7. Loprieno, N.: Cysteine protection against reversion to methionine independence induced by N-nitroso- N -methylurethane in Schizosaccharomyces pombe. Mutation Res. 1, 469–472 (1964).Google Scholar
  8. G. Zetterberg, R. Guglielminetti, and E. Michel: The lethal and mutagenic effects of N-nitroso-N-methylurethane and N-nitroso-N-ethylurethane in Colletotrichum coccodes. Mutation Res. 1, 37–44 (1964).Google Scholar
  9. Marquardt, EL, F. K. Zimmermann u. R. Schwaier: Nitrosamide als mutagene Agentien. Naturwissenschaften 50, 625 (1963).Google Scholar
  10. U. v. Laer u. F. K. Zimmermann: Das spontane Nitrosamid- und Nitritinduzierte Mutationsmuster von 6 Adenin-Genloci der Hefe. Z. Vererbungsl. 98, 1–9 (1966).PubMedGoogle Scholar
  11. Megnet, R.: Screening of auxotrophic mutants of Schizosaccharomyces pombe with 2-deoxyglucose. Mutation Res. 2, 328–331 (1965b).PubMedGoogle Scholar
  12. Morita, T., and I. Mifuchi: Effect of methylene blue on the action of 4-nitroquinoline N-oxide and acriflavine in inducing respiration-deficient mutants of Saccharomyces cerevisiae. Jap. J. Microbiol. 9, 123–129 (1965).PubMedGoogle Scholar
  13. Nashed, N., and G. Jabbur: A genetic and functional characterization of adenine mutants induced in yeast by 1-nitroso-imidazolidone-2 and nitrous acid. Z. Vererbungsl. 98, 106–110 (1966).PubMedGoogle Scholar
  14. Nasim, A., and C. H. Clarke: Nitrous acid-induced mosaicism in Schizosaccharomyces pombe. Mutation Res. 2, 395–402 (1965).PubMedGoogle Scholar
  15. Schwaier, R., F. K. Zimmermann, and U. v. Laer: The effect of temperature on the mutation induction in yeast by N-alkylnitrosamides and nitrous acid. Z. Vererbungsl. 97, 72–74 (1965).Google Scholar
  16. Zetterberg, G., and B. A. Kihlman: Production of mutations by streptonigrin in the ascomycete Ophiostoma multiannulatum. Mutation Res. 2, 470–471 (1965).PubMedGoogle Scholar
  17. Zimmermann, F. K., u. R. Schwaier: Teilweise Reversion einer histidin-adenin-bedürftigen Einfachmutante bei Saccharomyces cerevisiae. Z. Vererbungsl. 94, 253–260 (1963a).PubMedGoogle Scholar
  18. — Eine ungewöhnliche Dosiswirkungs-Beziehung der N-Nitroso-N-Methylacetamid induzierten Mutationsraten bei Saccharomyces cerevisiae. Z. Vererbungsl. 94, 261–268 (1963 b).PubMedGoogle Scholar
  19. R. Schwaier, and U. v. Laer: The influence of pH on the mutagenicity in yeast of N-methylnitrosamides and nitrous acid. Z. Vererbungsl. 97, 68–71 (1965).Google Scholar
  20. — Nitrous acid and alkylating nitrosamides: Mutation fixation in Saccharomyces cerevisiae. Z. Vererbungsl. 98, 152–166 (1966a).PubMedGoogle Scholar
  21. — The effect of residual growth on the frequency of reverse mutations induced with nitrous acid and 1-nitroso-imidazolidone-2 in yeast. Mutation Res. 3, 171–173 (1966b).PubMedGoogle Scholar
  22. Zimmermann, F. K., R. Schwaier, and U. v. Laer: The effect of temperature on the mutation fixation in yeast. Mutation Res. 3, 90–92 (1966 c).PubMedGoogle Scholar

A III, 2

  1. Brockman, H. E., and W. Goben: Mutagenicity of a monofunctional alkylating agent derivative of acridine in Neurospora. Science 147, 750–751 (1965).PubMedGoogle Scholar
  2. Calvori, C., and G. Morpurgo: Analysis of induced mutations in Aspergillus nidulans. I. UV- and HNO2-induced mutations. Mutation Res. 2, 145–151 (1966).Google Scholar
  3. Heslot, H.: Les mécanismes moléculaires de la mutagenèse et la nature des mutations. Ann. Amélior. Plantes 15, 111–157 (1965).Google Scholar
  4. Lingens, F.: Wirkungsmechanismus einiger chemischer Mutagene. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 116–131 (1966).Google Scholar
  5. Loprieno, N.: Differential response of Schizosaccharomyces pombe to ethyl-methanesulfonate and methylmethanesulfonate. Mutation Res. 3, 486–493 (1966).Google Scholar
  6. Malling, H. V.: Identification of the genetic alterations in nitrous acid-induced ad-3 mutants of Neurospora crassa. Mutation Res. 2, 320–327 (1965).PubMedGoogle Scholar
  7. Nasim, A., and C. H. Clarke: Nitrous acid-induced mosaicism in Schizosaccharomyces pombe. Mutation Res. 2, 395–402 (1965).PubMedGoogle Scholar
  8. Sarachek, A.: Mutagenicity of cystosine for an adenine and arginine requiring strain of Candida albicans. Mycopathologia (Den Haag) 26, 72–78 (1965).Google Scholar

A IV, 1

  1. Calvori, C., and G. Morpurgo: Analysis of induced mutations in Aspergillus nidulans. I. UV- and HNO2-induced mutations. Mutation Res. 2, 145–151 (1966).Google Scholar
  2. Clarke, C. H.: Mutagen specificity among reversions of ultraviolet-induced adenine-1 mutants of Schizosaccharomyces pombe. Genet. Res. Camb. 6, 433–441 (1965).Google Scholar
  3. —, and N. Loprieno: The influence of genetic background on the induction of methionine reversions by di-epoxybutane in Schizosaccharomyces pombe. Microbial Gen. Bull. 22, 11–12 (1965).Google Scholar
  4. Loprieno, N.: Differential response of Schizosaccharomyces pombe to ethyl methanesulfonate and methyl methanesulfonate. Mutation Res. 3, 486–493 (1966).Google Scholar
  5. —, and C. H. Clarke: Investigations on reversions to methionine independence induced by mutagens in Schizosaccharomyces pombe. Mutation Res. 2, 312–319 (1965).PubMedGoogle Scholar
  6. Marquardt, H., U. v. Laer u. F. K. Zimmermann: Das spontane Nitros-amid- und Nitrit-induzierte Mutationsmuster von 6 Adenin-Genloci der Hefe. Z. Vererbungsl. 98, 1–9 (1966).PubMedGoogle Scholar
  7. Schwaier, R.: Vergleichende Mutationsversuche mit sieben Nitrosamiden im Rückmutationstest an Hefen. Z. Vererbungsl. 97, 55–67 (1965).Google Scholar

A IV, 2

  1. Lindegren, G., Y. L. Hwang, Y. Oshima, and C. C. Lindegren: Genetical mutants induced by ethyl methanesulfonate in Saccharomyces. Canad. J. Genet. Cytol. 7, 491–499 (1965).PubMedGoogle Scholar
  2. Gilmore, R. A., and R. K. Mortimer: Super-suppressor mutations in Saccharomyces cerevisiae. J. molec. Biol. 20, 307–311 (1966).PubMedGoogle Scholar
  3. Ishikawa, T.: Studies on the mechanism of forward and reverse mutations in Ustilago maydis. Japan. J. Bot. 18, 1–17 (1962).Google Scholar
  4. Magni, G. E.: The origin of spontaneous mutations during meiosis. Proc. nat. Acad. Sci. (Wash.) 50, 975–980 (1963).Google Scholar
  5. Magni, G.E.: Origin and nature of spontaneous mutations in meiotic organisms. J. cell. comp. Physiol. 64, 165–171 (1964).Google Scholar
  6. R. C. v. Borstel, and C. M. Steinberg: Super-suppressors as addition-deletion mutations. J. molec. Biol. 16, 568–570 (1966).PubMedGoogle Scholar
  7. Morpurgo, G., and C. Calvori: Variable frequency of back-mutation in different genotypes. Ann. 1st. Super. Sanità 2, 429–430 (1966).Google Scholar
  8. Paszewski, A., and S. Surzycki: “Selfers” and high mutation rate during meiosis in Ascobolus immersus. Nature (Lond.) 204, 809 (1964).Google Scholar
  9. Upshall, A.: Somatically unstable mutants of Aspergillus nidulans. Nature (Lond.) 209, 1113–1115 (1966).Google Scholar

B I

  1. Bainbridge, B. W., and J. A. Roper: Observations on the effects of a chromosome duplication in Aspergillus nidulans. J. gen. Microbiol. 42, 417–424 (1966).PubMedGoogle Scholar
  2. Käfer, E.: Origins of translocations in Aspergillus nidulans. Genetics 52, 217–232 (1965).PubMedGoogle Scholar
  3. —, and T. L. Chen: Translocations and recessive lethals in Aspergillus by ultra-violet light and gamma rays. Canad. J. Genet. Cytol. 6, 249–254 (1964).Google Scholar

C I

  1. James, A. T., and H. P. Papazian: Enumeration of quad types in diploids and tetraploids. Genetics 46, 817–829 (1961).PubMedGoogle Scholar
  2. Scheda, R.: Untersuchungen über die Maltose- und Glucosevergärung bei homozygoten Hefestämmen mit verschiedenen Genomzahlen. Arch. Mikrobiol. 45, 65–100 (1963).PubMedGoogle Scholar

C II

  1. Casselton, L.: The production and behavior of diploids of Coprinus lagopus. Genet. Res. Camb. 6, 190–208 (1965).Google Scholar
  2. —, and D. Lewis: Compatibility and stability of diploids in Coprinus lagopus. Genet. Res. Camb. 8, 61–72 (1966).Google Scholar
  3. Parag, Y., and B. Nachman: Diploidy in the tetrapolar heterothallic basidiomycete Schizophyllum commune. Heredity 21, 151–154 (1966).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1967

Authors and Affiliations

  • Karl Esser
    • 1
  • Rudolf Kuenen
    • 2
  1. 1.Ruhr-Universität BochumGermany
  2. 2.KölnGermany

Personalised recommendations