Recombination

  • Karl Esser
  • Rudolf Kuenen

Abstract

Genetic material possesses the capacity for self-duplication. The total amount of genetic information as well as its order within the genome remains the same from nuclear generation to nuclear generation. Each daughter genome arising from a replication generally consists of an exact copy of the original genetic information. With each mitotic division such copies are transmitted to the daughter cells. The identity of the genetic information is thus assured for each cell of a multicellular organism. Nevertheless, such an inflexible transmission of hereditary material would prevent evolution. This problem is overcome by two fundamental properties of the genetic material, namely recombination and mutation.

Keywords

Maize Methionine Cellulase Tritium Thiourea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Apirion, D.: Formal and physiological genetics of ascospore colour in Aspergillus nidulans. Genet. Res. 4, 276–283 (1963).Google Scholar
  2. Barratt, R. W.: A word of caution: genetic and cytological effects of Abbott stocks in Neurospora crassa. Microbial. Genet. Bull. 11, 5–6 (1954).Google Scholar
  3. — D. Newmeyer, D. D. Perkins, and L. Garnjobst: Map construction in Neurospora crassa. Advanc. Genet. 6, 1–93 (1954).Google Scholar
  4. —, and W. N. Ogata: Neurospora stock list, second revision. Neurospora Newsletter 5, 24–82 (1964 a).Google Scholar
  5. — — First supplement to Neurospora stock list, second revision as published in Neurospora Newsletter 5. Neurospora Newsletter 6, 29–40 (1964 b).Google Scholar
  6. Barron, G.L.: The parasexual cycle and linkage relationships in the storage rot fungus Penicillium expansum. Canad. J. Bot. 40, 1603–1613 (1962).Google Scholar
  7. Beadle, G. W., and E. L. Tatum: Neurospora. II. Methods of producing and detecting mutations concerned with nutritional requirements. Amer. J. Bot. 32, 678–685 (1945).Google Scholar
  8. Belling, J.: Crossing over and gene rearrangement in flowering plants. Genetics 18, 388–413 (1933).PubMedGoogle Scholar
  9. Bennett, J. H.: Modes of tetrad formation. Amer. Naturalist 90, 195–199 (1956).Google Scholar
  10. Benzer, S.: Fine structure of a genetic region in bacteriophage. Proc. nat. Acad. Sci. (Wash.) 41, 344–354 (1955).Google Scholar
  11. — The elementary units of heredity. In: W. D. McElroy and B. Glass (edits.), The chemical basis of heredity, pp. 70–93. Baltimore 1957.Google Scholar
  12. Bernstein, H.: On the mechanism of intragenic recombination. I. The r II region of bacteriophage T 4. J. theor. Biol. 3, 335–353 (1962).Google Scholar
  13. — On the mechanism of intragenic recombination. II. Neurospora crassa. J. theor. Biol. 6, 347–370 (1964).Google Scholar
  14. Bistis, G.: Studies on the genetics of Ascobolus stercorarius (Bull.) Schrot. Bull. Torrey bot. Club 83, 35–61 (1956).Google Scholar
  15. —, and L. S. Olive: Ascomycete spore mutants and their use in genetic studies. Science 120, 105–106 (1954).PubMedGoogle Scholar
  16. Bohn, W.: Einige Untersuchungen über die Tetradenaufspaltung bei Basidiomyceten. Z. indukt. Abstamm.- u. Vererb.-Lehre 67, 435–445 (1933).Google Scholar
  17. Bole-Gowda, B. N., D. D. Perkins, and W. N. Strickland: Crossing over and interference in the centromere region of linkage group I of Neurospora. Genetics 47, 1243–1252 (1962).PubMedGoogle Scholar
  18. Boone, D. M., and G. W. Keitt: Venturia inaequalis (Cke) Wint. VIII. Inheritance of colour mutant characters. Amer. J. Bot. 43, 226–233 (1956).Google Scholar
  19. — J. F. Stauffer, M. A. Stahmann, and G. W. Keitt: Venturia inaequalis (Cke) Wint. VII. Induction of mutants for studies on genetics, nutrition and pathogenicity. Amer. J. Bot. 43, 199–204 (1956).Google Scholar
  20. Bresch, C.: Zum Paarungsmechanismus von Bakteriophagen. Z. Naturforsch. 10b, 545–561 (1955).Google Scholar
  21. — Replication and recombination in bacteriophage. Z. Vererbungsl. 93, 476–490 (1962).Google Scholar
  22. — Klassische und molekulare Genetik. Berlin-Göttingen-Heidelberg: Springer 1964.Google Scholar
  23. Bridges, C. B., and K. S. Brehme: The mutants of Drosophila melanogaster. Carnegie Inst. Wash. Publ., Washington (D.C.) 1944, 552. Brieger, F.: Die genaue Bestimmung des Zeitpunktes der Mendelspaltung. Züchter 5, 34–44 (1933).Google Scholar
  24. Brunswick, H.: Die Reduktionsteilung bei den Basidiomyceten. Z. Bot. 18, 481–498 (1926).Google Scholar
  25. Burgeff, H.: Variabilität, Vererbung und Mutation bei Phycornyces blakesleeanus Bgff. Z. indukt. Abstamm.- u. Vererb.-Lehre 49, 26–94 (1928).Google Scholar
  26. Buss, H. R.: The genetics of methionineless mutants of Neurospora crassa. Ph. D. Thesis, Stanford University 1944.Google Scholar
  27. Carter, T. O.: A search for chromatid interference in the male house mouse. Z. indukt. Abstamm.- u. Vererb.-Lehre 86, 210–223 (1954).Google Scholar
  28. —, and D. S. Falconer: Stocks for detecting linkage in the mouse, and the theory of their design. J. Genet. 50, 307–323 (1951).Google Scholar
  29. —, and A. Robertson: A mathematical treatment of genetical recombination, using a fourstrand model. Proc. roy. Soc. B 139, 410–426 (1952).Google Scholar
  30. Case, M. E., and N. H. Giles: Evidence from tetrad analysis for both normal and aberrant recombination between allelic mutants in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 44, 378–390 (1958a).Google Scholar
  31. — — Recombination mechanisms at the pan-2-locus in Neurospora crassa. Cold Spr. Harb. Symp. quant. Biol. 23, 119–135 (1958b).Google Scholar
  32. — — Comparative complementation and genetic maps of the pan-2 locus in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 46, 659–676 (1960).Google Scholar
  33. — — Allelic recombination in Neurospora: Tetrad analysis of a three-point cross within the pan-2-locus. Genetics 49, 529–540 (1964).PubMedGoogle Scholar
  34. Catcheside, D. G.: The genetics of microorganisms. 223 pp. London: Pitmen 1951.Google Scholar
  35. — A. P. Jessop, and B. R. Smith: Genetic controls of allelic recombination in Neurospora. Nature (Lond.) 202, 1242–1243 (1964).Google Scholar
  36. Chase, M., and A. H. Doermann: High negative interference over short segments of the genetic structure of bacteriophage T 4. Genetics 43, 332–353 (1958).PubMedGoogle Scholar
  37. Colson, B.: The cytology and morphology of Neurospora tetrasperma Dodge. Ann. Bot. (Lond.) 48, 211–224 (1934).Google Scholar
  38. Darlington, C. D.: A cytological demonstration of „genetic“crossing over. Proc. roy. Soc. B 107, 50–59 (1930).Google Scholar
  39. Day, P. R.: The genetics of Coprinus lagopus. Rep. John Innes hort. Instn. 49, 16–18 (1958).Google Scholar
  40. — The structure of the A mating type locus in Coprinus lagopus. Genetics 45, 641–650 (1960).PubMedGoogle Scholar
  41. —, and G. E. Anderson: Two linkage groups in Coprinus lagopus. Genet. Res. 2, 414–423 (1961).Google Scholar
  42. — D.M. Boone, and G. W. Keitt: Venturiainaequalis (Cke) Wint. XI. The chromosome number. Amer. J. Bot. 43, 835–838 (1956).Google Scholar
  43. Demerec, M.: The fine structure of the gene. In: J. M. Allen (edit.) The molecular control of cellular activity, pp. 167–177. New York-Toronto-London 1962.Google Scholar
  44. Desborough, S., and G. Lindegren: Chromosome mapping of linkage data from Saccharomyces by tetrad analysis. Genetica 30, 346–383 (1959).PubMedGoogle Scholar
  45. — E. E. Shult, T. Yoshida, and C. C. Lindegren: Interference patterns in family y-1 of Saccharomyces. Genetics 45, 1467–1480 (1960).PubMedGoogle Scholar
  46. Dickinson, S.: Experiments on the physiology and genetics of the smut fungi. Cultural characters. I. Their permanence and segregation. Proc. roy. Soc. B 102, 174–176 (1928).Google Scholar
  47. Dodge, B. O.: Spore formation in asci with fewer than eight spores. Mycologia (N.Y.) 20, 18–21 (1928).Google Scholar
  48. Doermann, A. H.: Investigations of the lysine-requiring mutants of Neurospora crassa. Ph. D. Thesis, Stanford University 1946.Google Scholar
  49. Dowding, E. S.: Gelasinospora, a new genus of Pyrenomycetes with pitted spores. Canad. J. Res. 9, 294–305 (1933).Google Scholar
  50. —, and A. Bakerspigel: Poor fruiters and barrage mutants in Gelasinospora. Canad. J. Bot. 34, 231–240 (1956).Google Scholar
  51. Ebersold, W. T.: Crossing over in Chlamydomonas reinhardi. Amer. J. Bot. 43, 408–410 (1956).Google Scholar
  52. —, and R. P. Levine: A genetic analysis of linkage group I of Chlamydomonas reinhardi. Z. Verbungsl. 90, 74–82 (1959).Google Scholar
  53. El-Ani, A. S., L. S. Olive, and Y. Kitani: Genetics of Sordaria fimicola. IV. Linkage group I. Amer. J. Bot. 48, 716–723 (1961).Google Scholar
  54. Ellingboe, A. H.: Somatic recombination in Puccinia graminis tritici. Phytopathology 51, 13–15 (1961).Google Scholar
  55. — Illegitimacy and specific factor transfer in Schizophyllum commune. Proc. nat. Acad. Sci. (Wash.) 49, 286–292 (1963).Google Scholar
  56. — Somatic recombination in dikaryon K of Schizophyllum commune. Genetics 49, 247–251 (1964).PubMedGoogle Scholar
  57. —, and J. R. Raper: Somatic recombination in Schizophyllum commune. Genetics 47, 85–98 (1962).PubMedGoogle Scholar
  58. Elliott, C. G.: The cytology of Aspergillus nidulans. Genet. Res. 1, 462 – 476 (1960 a).Google Scholar
  59. — Non-localised negative interference in Aspergillus nidulans. Heredity 15, 247–262 (1960b).Google Scholar
  60. Emerson, S.: Meiotic recombination in fungi with special reference to tetrad analysis. In: W. J. Burdette (edit.), Methodology in basic genetics, pp. 167–208. San Franzisco 1963.Google Scholar
  61. —, and J. E. Cushing: Altered sulphonamide antagonism in Neurospora. Fed. Proc. 5, 379–389 (1946).PubMedGoogle Scholar
  62. Esser, K.: Die Incompatibilitätsbeziehungen zwischen geographischen Rassen von Podospora anserina (Ces.) Rehm. I. Die genetische Analyse der Semi-Incompatibilität. Z. indukt. Abstamm.- u. Vererb.-Lehre 87, 595–624 (1956).Google Scholar
  63. — Die Incompatibilitätsbeziehungen zwischen geographischen Rassen von Podospora anserina (Ces.) Rehm. II. Die Wirkungsweise der Semi-Incompatibilitäts-Gene. Z. Vererbungsl. 90, 29–52 (1959a).Google Scholar
  64. — Die Incompatibilitätsbeziehungen zwischen geographischen Rassen von Podospora anserina (Ces.) Rehm. III. Untersuchungen zur Genphysiologie der Barragebildung und Semi-Incompatibilität. Z. Vererbungsl. 90, 445–456 (1959b).PubMedGoogle Scholar
  65. —, u. J. Straub: Genetische Untersuchungen an Sordaria macrospora Auersw., Kompensation und Induktion bei genbedingten Entwicklungsdefekten. Z. Vererbungsl. 89, 729–746 (1958).PubMedGoogle Scholar
  66. Eversole, R. A.: Biochemical mutants of Chlamydomonas reinhardi. Amer. J. Bot. 43, 404–407 (1956).Google Scholar
  67. —, and E. L. Tatum: Chemical alteration of crossing over frequency in Chlamydomonas. Proc. nat. Acad. Sci. (Wash.) 42, 68–73 (1956).Google Scholar
  68. Faull, A. F.: On the resistance of Neurospora crassa. Mycologia (N.Y.) 22, 288–303 (1930).Google Scholar
  69. Fincham, J. R. S.: Genetic and biochemical studies in Neurospora. Ph. D. Thesis, Cambridge University 1950.Google Scholar
  70. — A comparative genetic study of the mating-type chromosomes of two species of Neurospora. J. Genet. 50, 221–229 (1951).Google Scholar
  71. —, and P. R. Day: Fungal genetics. Oxford 1963.Google Scholar
  72. Fisher, R. A.: A class of enumerations of importance in genetics. Proc. roy. Soc. B 136, 509–520 (1950).Google Scholar
  73. — The experimental study of multiple crossing over. Caryologia (Firenze) 6, Suppl. 227–231 (1955).Google Scholar
  74. — M. F. Lyon, and A. R. G. Owen: The sex chromosome in the house mouse. Heredity 1, 355–365 (1947).Google Scholar
  75. Fogel, S., and D. D. Hurst: Coincidence relations between gene conversion and mitotic recombination in Saecharomyces. Genetios 48, 321–328 (1963).Google Scholar
  76. Forbes, E. C.: Recombination in the pro region of Aspergillus nidulans. Microbial Genet. Bull. 13, 9–11 (1956).Google Scholar
  77. Franke, G.: Die Zytologie der Ascusentwicklung von Podospora anserina. Z. indukt. Abstamm.- u. Vererb.-Lehre 88, 159–160 (1957).Google Scholar
  78. — Versuche zur Genomverdoppelung des Ascomyceten Podospora anserina (Ces.) Rehm. Z. Vererbungsl. 93, 109–117 (1962).Google Scholar
  79. Fratello, B., G. Morpurgo, and G. Sermonti: Induced somatic segregation in Aspergillus nidulans. Genetics 45, 785–800 (1960).PubMedGoogle Scholar
  80. Freese, E.: The correlation effect for a histidine locus of Neurospora crassa. Genetics 42, 671–684 (1957a).PubMedGoogle Scholar
  81. — Über die Feinstruktur des Genoms im Bereich eines pab-Locus von Neurospora crassa. Z. indukt. Abstamm.- u. Vererb.-Lehre 88, 388–406 (1957b).Google Scholar
  82. Frost, L. C.: A possible interpretation of the cytogenetic effects of Abbott stocks in Neurospora crassa. Microbial Genet. Bull. 12, 7–9 (1955a).Google Scholar
  83. — The genetics of some wild-type and mutant strains of Neurospora crassa. Ph. D. Thesis, Cambridge University 1955b.Google Scholar
  84. — Heterogeneity in recombination frequencies in Neurospora crassa. Genet. Res. 2, 43–62 (1961).Google Scholar
  85. Garnjobst, L.: Genetic control of heterocaryosis in Neurospora crassa. Amer. J. Bot. 40, 607–614 (1953).Google Scholar
  86. Giles, N. H., C. W. H. Partridge, and N. J. Nelson: The genetic control of adenylo-succinase in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 43, 305–317 (1957).Google Scholar
  87. Goldschmidt, R.: Prä- oder Postreduktion der Chromosomen? Die Lösung eines alten Problems. Naturwissenschaften 19, 358–362 (1932).Google Scholar
  88. Gowans, C. S.: Some genetic investigations on Chlamydomonas eugametos. Z. indukt. Abstamm.- u. Vererb.-Lehre 91, 63–73 (1960).Google Scholar
  89. Gowen, J. W.: A biometrical study of crossing over. Genetics 4, 205–250 (1919).PubMedGoogle Scholar
  90. Graubard, M. A.: Temperature effect on interference and crossing over. Genetics 19, 83–94 (1934).PubMedGoogle Scholar
  91. Haldane, J. B. S.: The combination of linkage values, and the calculation of distances between the loci of linked factors. J. Genet. 8, 299–309 (1919).Google Scholar
  92. — The cytological basis of genetical interference. Cytologia (Tokyo) 3, 54–65 (1931).Google Scholar
  93. Hanna, W. F.: Studies in the physiology and cytology of Ustilago zeae and Sorosporium reilianum. Phytopathology 19, 415–442 (1929).Google Scholar
  94. Hastings, P. J., and H. L. K. Whitehouse: A polaron model of genetic recombination by the formation of hybrid deoxyribonucleic acid. Nature (Lond.) 201, 1052–1054 (1964).Google Scholar
  95. Hawthorne, D. C., and R. K. Mortimer: Chromosome mapping in Sac-charomyces: centromere linked genes. Genetics 45, 1085–1110 (1960).PubMedGoogle Scholar
  96. Hayes, W.: The genetics of bacteria and their viruses. Studies in basic genetics and molecular biology. Oxford 1964.Google Scholar
  97. Heagy, F. C., and J. A. Roper: Deoxyribonucleic acid content of haploid and diploid Aspergillus conidia. Nature (Lond.) 170, 713 (1952).Google Scholar
  98. Hershey, A. D.: Reproduction of bacteriophage. Int. Rev. Cytol. 1, 119 – 134 (1952).Google Scholar
  99. Heslot, H.: Contribution à l’étude cytogénétique et génétique des Sordariacées. Rev. Cytol. Biol. véget. 19, Suppl. 2, 1–235 (1958).Google Scholar
  100. Hirsch, H. M.: Temperature-dependent cellulase production by Neurospora crassa and its ecological implications. Experientia (Basel) 10, 180–182 (1954).Google Scholar
  101. Holliday, R.: The genetics of Ustilago mayáis. Genet. Res. 2, 204–230 (1961a).Google Scholar
  102. Holliday, R.: — Induced mitotic crossing over in Ustilago maydis. Genet. Res. 2, 231–248 (1961b).Google Scholar
  103. Holliday, R.: — Effect of photoreactivation on ultra-violet-induced segregation of heterozygous diploids. Nature (Lond.) 193, 95–96 (1962a).Google Scholar
  104. Holliday, R.: — Mutation and replication in Ustilago maydis. Genet. Res. 3, 472–486 (1962 b).Google Scholar
  105. Holliday, R.: — The induction of mitotic recombination by mitomycin C in Ustilago and Saccharomyces. Genetics 50, 323–335 (1964 a).PubMedGoogle Scholar
  106. Holliday, R.: — A mechanism for gene conversion in fungi. Genet. Res. 5, 282–304 (1964 b).Google Scholar
  107. Holloway, B. W.: Heterocaryosis in Neurospora crassa. Ph. D. Thesis, California Institute of Technology 1953.Google Scholar
  108. — Segregation of the mating-type locus in Neurospora crassa. Microbial Genet. Bull. 10, 15–16 (1954).Google Scholar
  109. Horowitz, N. H., and H. MacLeod: The DNA content of Neurospora nuclei. Microbial Genet. Bull. 17, 6–7 (1960).Google Scholar
  110. Houlahan, M. B., G. W. Beadle, and H. G. Calhoun: Linkage studies with biochemical mutants of Neurospora crassa. Genetics 34, 493–507 (1949).Google Scholar
  111. Howe, H. B.: Crossing over in the first (sex) chromosome of Neurospora crassa. Genetics 39, 972–973 (1954).Google Scholar
  112. Howe, H. B.: — Crossing over and nuclear passing in Neurospora crassa. Genetics 41, 610–622 (1956).PubMedGoogle Scholar
  113. Howe, H. B.: — Markers and centromere distance in Neurospora tetrasperma. Genetics 48, 121–131 (1963).PubMedGoogle Scholar
  114. Howe, H. B.: — Sources of error in genetic analysis in Neurospora tetrasperma. Genetics 50, 181–189 (1964).PubMedGoogle Scholar
  115. Hüttig, W.: Über den Einfluß der Temperatur auf die Keimung und Geschlechtsverteilung bei Brandpilzen. Z. Bot. 24, 529–577 (1931).Google Scholar
  116. Hüttig, W.: — Über physikalische und chemische Beeinflussung des Zeitpunktes der Chromosomenreduktion bei Brandpilzen. Z. Bot. 26, 1–26 (1933a).Google Scholar
  117. Hüttig, W.: — Über den Einfluß von Außenbedingungen auf die Chromosomenreduktion. Züchter 5, 243–249 (1933b).Google Scholar
  118. Hurst, D. D., and S. Fogel: Mitotic recombination and heteroallelic repair in Saccharomyces cerevisiae. Genetics 50, 435–458 (1964).PubMedGoogle Scholar
  119. Hwang, Y. L., G. Lindegren, and C. C. Lindegren: Mapping the eleventh centromere in Saccharomyces. Canad. J. Genet. Cytol. 5, 290–298 (1963).Google Scholar
  120. Ihler, G., and M. Meselson: Genetic recombination in bacteriophage λ by breakage and joining of DNA molecules. Virology 21, 7–10 (1963).PubMedGoogle Scholar
  121. Ikeda, Y., C. Ishitani, and K. Nakamura: A high frequency of heterozygous diploids and somatic recombination induced in imperfect fungi by ultra-violet light. J. gen. appl. Microbiol. (Tokyo) 3, 1–11 (1957).Google Scholar
  122. Ishikawa, T.: Genetic studies of ad-8 mutants in Neurospora crassa. I. Genetic fine structure of the ad-8 locus. Genetics 47, 1147–1161 (1962).PubMedGoogle Scholar
  123. Ishitani, C.: A high frequency of heterozygous diploids and somatic recombination produced by ultra-violet light in imperfect fungi. Nature (Lond.) 178, 706 (1956).Google Scholar
  124. Ito, T.: Genetic study on the expression of the color factor of the ascospore in Sordaria fimicola. I. Segregation of the dark- and lightcolored ascospore. Res. Bull. Obihiro Zootech. Univ. Ser. I 3, 223–230 (1960).Google Scholar
  125. James, A. P., and B. Lee-Whiting: Radiation-induced genetic segregations in vegetative cells of diploid yeast. Genetics 40, 826–831 (1955).PubMedGoogle Scholar
  126. Janssens, F. A.: La theorie de la chiasmatypie. Nouvelle interprétation des cinèses de maturation. Cellule 25, 389–411 (1909).Google Scholar
  127. Joly, P.: Données récentes sur la génétique des champignons supérieurs (Ascomycètes et Basidiomycètes). Rev. Mycol. (Paris) 29, 115–186 (1964).Google Scholar
  128. Joussen, H., u. J. Kemper: Ein neues Interferenzmodell zur Aufstellung von Tetraden-Kartierungsfunktionen. Z. Vererbungsl. 91, 350–354 (1960).Google Scholar
  129. Käfer, E.: An 8-chromosome map of Aspergillus nidulans. Advanc. Genet. 9, 105–145 (1958).Google Scholar
  130. Käfer, E.: — The processes of spontaneous recombination in vegetative nuclei of Aspergillus nidulans. Genetics 46, 1581–1609 (1961).PubMedGoogle Scholar
  131. — Radiation effects and mitotic recombination in diploids of Aspergillus nidulans. Genetics 48, 27–45 (1963).PubMedGoogle Scholar
  132. — , and A. Chen: UV-induced mutations and mitotic crossing-over in dormant and germinating conidia of Aspergillus. Microbial. Genet. Bull. 20, 8–9 (1964).Google Scholar
  133. Kakar, S. N.: Allelic recombination and its relation to recombination of outside markers in yeast. Genetics 48, 957–966 (1963).PubMedGoogle Scholar
  134. Kaplan, R. W.: Genetik der Mikroorganismen. Fortschr. Bot. 22, 293–315 (1960).Google Scholar
  135. Keitt, G. W., and D. M. Boone: Induction and inheritance of mutant characters in Venturia inaequalis in relation to its pathologenicity. Phytopathology 44, 362–370 (1954).Google Scholar
  136. Keitt, G. W., and D. M. Boone: — — Use of induced mutations in the study of host-pathogen relationships. Genetics in Plant Breeding. Brookhaven Symp. in Biol. 9, 209–217(1956).Google Scholar
  137. Kellenberger, G., M. L. Zichichi, and J. J. Weigle: Exchange of DNA in the recombination of bacteriophage. Proc. nat. Acad. Sci. (Wash.) 47, 869–878 (1961).Google Scholar
  138. Kemper, J.: Temperaturabhängigkeit der Rekombinations- und Interferenzwerte bei Sordaria macrospora Auersw. Diss. Math. Naturwiss. Fak. Univ. Köln 1964.Google Scholar
  139. Kikkawa, H.: Crossing over in the males of Drosophila virilis. Proc. Imp. Acad. (Tokyo) 9, 535–536 (1933).Google Scholar
  140. Kikkawa, H.: — Biological significance of coincidence in crossing over. Jap. J. Genet. 11, 51–59 (1935).Google Scholar
  141. Kitani, Y.: Three kinds of transreplication in Sordaria fimicola. Jap. J. Genet. 37, 131–146 (1962).Google Scholar
  142. Kitani, Y. — L. S. Olive, and A. S. El-Ani: Transreplication and crossing over in Sordaria fimicola. Science 134, 668–669 (1961).PubMedGoogle Scholar
  143. Kitani, Y. — L. S. Olive, and A. S. El-Ani:— — — Genetics of Sordaria fimicola. V. Aberrant segregation at the g locus. Amer. J. Bot. 49, 697–706 (1962).Google Scholar
  144. Knapp, F.: Zur Genetik von Sphaerocarpus. (Tetradenanalytische Untersuchungen.) Ber. dtsch. bot. Ges. 54, 58–69 (1936).Google Scholar
  145. — Crossing over und Chromosomenreduktion. Z. indukt. Abstamm.- u. Vererb.-Lehre 73, 409–418 (1937).Google Scholar
  146. — Tetrad analysis in green plants. Canad. J. Genet. Cytol. 2, 89–95 (1960).Google Scholar
  147. — ,u E. Möller: Tetradenanalytische Auswertung eines Dreipunktversuches bei Sphaerocarpus donellii Aust. Z. indukt. Abstamm.- u. Vererb.-Lehre 87, 298–310 (1955).Google Scholar
  148. Kniep, H.: Die Sexualität der niederen Pflanzen. Jena: Gustav Fischer 1928.Google Scholar
  149. Kosambi, D.D.: The estimation of map distance from recombination values. Ann. Eugen. (Lond.) 12, 172–175 (1944).Google Scholar
  150. Kuenen, R.: Ein Modell zur Analyse der crossover-Interferenz. Z. Vererbungsl. 93, 35–65 (1962a).Google Scholar
  151. — Crossover- und Chromatiden-Interferenz bei Podospora anserina (Ces.) Rehm. Z. Vererbungsl. 93, 66–108 (1962b).Google Scholar
  152. Lederberg, J.: Recombination mechanisms in bacteria. J. cell. comp. Physiol. (Suppl. 2) 45, 75–107 (1955).Google Scholar
  153. Leupold, U.: Die Vererbung von Homothallie und Heterothallie bei Schizosaecharomyces pombe. C. R. Lab. Carlsberg, Sér. Physiol. 24, 381–480 (1950).Google Scholar
  154. — Physiologisch-genetische Studien an adeninabhängigen Mutanten von Schizosaccharomyces pombe. Ein Beitrag zum Problem der Pseudoallelie. Schweiz. Z. allg. Path. 20, 535–544 (1957).PubMedGoogle Scholar
  155. — Studies on recombination in Schizosaccharomyces pombe. Cold Spr. Harb. Symp. quant. Biol. 23, 161–170 (1958).Google Scholar
  156. —: Intragene Rekombination und allele Komplementierung. Arch. Klaus-Stift. Vererb.-Forsch. 36, 89–117 (1961).Google Scholar
  157. —, and H. Hottinguer: Some data on segregation in Saecharomyces. Heredity 8, 243–258 (1954).Google Scholar
  158. Levine, R. P., and W. T. Ebersold: Gene recombination in Chlamydomonas reinhardi. Cold Spr. Harb. Symp. quant. Biol. 23, 101–109 (1958).Google Scholar
  159. Lewis, D.s: Genetical analysis of methionine suppressors in Coprinus. Genet. Res. 2, 141–155 (1961).Google Scholar
  160. —: The genetics of Neurospora. I. The inheritance of response to heat treatment. Bull. Torrey bot. Club 59, 85–102 (1932a).Google Scholar
  161. —: The genetics of Neurospora. II. Segregation of the sex factors in asci of Neurospora crassa, N. sitophila and N. tetrasperma. Bull. Torrey bot. Club 59, 119–138 (1932b).Google Scholar
  162. —: The genetics of Neurospora. III. Pure bred stocks and crossing over in Neurospora crassa. Bull. Torrey bot. Club 60, 133–154 (1933).Google Scholar
  163. —: A six-point map of the sex chromosome of Neurospora crassa. J. Genet. 32, 243–256 (1936a).Google Scholar
  164. —: The structure of the sex chromosome of Neurospora crassa. J. Hered. 27, 251–259 (1936b).Google Scholar
  165. —: Chromosome maps of Saccharomyces. Proc. of the 8th Internat. Congr. of Genet. (Hereditas Suppl. Vol.) 338–355 (1949a).Google Scholar
  166. —: The yeast cell, its genetics and cytology. St. Louis: Educational Publishers Ltd. 1949 b.Google Scholar
  167. —: Non-mendelian segregation in a single tetrad of Saccharomyces ascribed to gene conversion. Science 121, 605–607 (1955).PubMedGoogle Scholar
  168. —, and G. Lindegren: Non-random crossing over in Neurospora. J. Hered. 28, 105–113 (1937).Google Scholar
  169. —, and —: Non-random crossing over in the second chromosome of Neurospora crassa. Genetics 24, 1–7 (1939).PubMedGoogle Scholar
  170. —, and —: Locally specific patterns of chromatid and chromosome interference in Neurospora. Genetics 27, 1–24 (1942).PubMedGoogle Scholar
  171. —, and — R. B. Drysdale, J. P. Hughes, and A. Brenes-Pomales: Genetical analysis of the clones from a single tetrad of Saccharomyces showing non-mendelian segregation. Genetica 28, 1–24 (1956).PubMedGoogle Scholar
  172. —, and — E. E. Shult, and S. Desborough: Chromosome maps of Saccharomyces. Nature (Lond.) 183, 800–802 (1959).Google Scholar
  173. — — —, and Y. L. Hwang: Centromeres sites of affinity and gene loci on the chromosomes of Saccharomyces. Nature (Lond.) 194, 260–265 (1962).Google Scholar
  174. — — — — —: Chromosome maps of Saccharomyces. Microbial Gen. Bull., Suppl. to No 19 (1963).Google Scholar
  175. —, and E. E. Shult: Non-random assortment of centromeres with implications regarding random assortment of chromosomes. Experientia (Basel) 12, 177 (1956).Google Scholar
  176. Lissouba, P.: Mise en évidence d’une unité génétique polarisée et essai d’analyse d’un cas d’interférence négative. Ann. Sci. nat. Bot. 44, 641–720 (1960).Google Scholar
  177. J. Mousseau, G. Rizet, and J. L. Rossignol: Fine structure of genes in the ascomycete Ascobolus immersus. Advanc. Genet. 11, 343–380 (1962).Google Scholar
  178. —, et G. Rizet: Sur l’existence d’une unité génétique polarisée ne subissant que des échanges non réciproques. C. R. Acad. Sci. (Paris) 250, 3408 – 3410 (1960).Google Scholar
  179. Ludwig, W.: Über numerische Beziehungen der crossover-Werte untereinander. Z. indukt. Abstamm.- u. Vererb.-Lehre 67, 58–95 (1934).Google Scholar
  180. —: Über die Häufigkeit von Prä- und Postreduktion. Z. indukt. Abstamm.-u. Vererb.-Lehre 73, 332–346 (1937a).Google Scholar
  181. —: Faktorenkoppelung und Faktorenaustausch bei normalem und aberrantem Chromosomenbestand. Leipzig: Georg Thieme 1938.Google Scholar
  182. Luria, S. E.: Reactivation of irradiated bacteriophage by transfer of self reproducing units. Proc. nat. Acad. Sci (Wash.) 33, 253–263 (1947).Google Scholar
  183. Makarewicz, A.: First results of genetic analysis in series 726 of Ascobolus immersus. Acta Soc. Bot. Pol. 33, 1–8 (1964).Google Scholar
  184. Maling, B.: Linkage data for group IV markers in Neurospora. Genetics 44, 1215–1220 (1959).PubMedGoogle Scholar
  185. Manney, T. R.: Action of a super-suppressor in yeast in relation to allelic mapping and complementation. Genetics 50, 109–121 (1964).PubMedGoogle Scholar
  186. Manney, T. R., and R. K. Mortimer: Allelic mapping in yeast using X-ray-induced mitotic reversion. Science 143, 581–582 (1964).PubMedGoogle Scholar
  187. Mather, K.: Reductional and equational seperation of the chromosomes in bivalents and multivalents. J. Genet. 30, 53–78 (1935).Google Scholar
  188. Mathieson, M. J.: Polarized segregation in Bombardia lunata. Ann. of Bot., N.S. 20, 623–634 (1956).Google Scholar
  189. McClintock, B.: Neurospora. I. Preliminary observations of the chromosomes of Neurospora crassa. Amer. J. Bot. 32, 671–678 (1945).Google Scholar
  190. McElroy, W. D., and B. Glass (edits.): The chemical basis of heredity. Baltimore 1957.Google Scholar
  191. McNelly, C. A., and L. C. Frost: The effect of temperature on the frequency of recombination in Neurospora crassa. Genetics 48, 900 (Abstr.) (1963).Google Scholar
  192. Meselson, M., and J. J. Weigle: Chromosome breakage accompanying genetic recombination in bacteriophage. Proc. nat. Acad. Sci. (Wash.) 47, 857–868 (1961).Google Scholar
  193. Michie, D.: Affinity: A new genetic phenomenon in the house mouse. Evidence from distant crosses. Nature (Lond.) 171, 26–27 (1953).Google Scholar
  194. —: Affinity. Proc. rov. Soc. B 144, 241–259 (1955).Google Scholar
  195. Middleton, R. B.: Sexual and somatic recombination in common-AB heterokaryons of Schizophyllum commune. Genetics 50, 701–710 (1964).PubMedGoogle Scholar
  196. Miller, M. W., and E. A. Bevan: Radio-protective chemicals and genetic recombination in Sordaria fimicola. Nature (Lond.) 202, 716 (1964).Google Scholar
  197. Mitchell, H. K.: Crossing over and gene conversion in Neurospora. In: W. D. McElroy and B. Glass (edits), The chemical basis of heredity, pp. 94–113. Baltimore 1957.Google Scholar
  198. Mitchell, M. B.: Aberrant recombination of pyridoxine mutants of Neurospora. Proc. nat. Acad. Sci. (Wash.) 41, 215–220 (1955 a).Google Scholar
  199. —: Further evidence of aberrant recombination in Neurospora. Proc. nat. Acad. Sci. (Wash.) 41, 935–937 (1955b).Google Scholar
  200. —: Genetic recombination in Neurospora. Genetics 43, 799–813 (1958).PubMedGoogle Scholar
  201. —: Detailed analysis of a Neurospora cross. Genetics 44, 847–856 (1959).PubMedGoogle Scholar
  202. —: Ascus formation and recombinant frequencies in Neurospora crassa. Genetics 45, 507–517 (1960a).PubMedGoogle Scholar
  203. —: Evidence of non-random distribution of ascus classes in fruiting bodies of Neurospora crassa. Genetics 45, 1245–1251 (1960b).PubMedGoogle Scholar
  204. —: Indications of pre-ascus recombination in Neurospora crosses. Genetics 48, 553–559 (1963).PubMedGoogle Scholar
  205. —: Phenotype distributions in asci of Neurospora crassa. Amer. J. Bot. 51, 88–96 (1964).Google Scholar
  206. Mitchell, M. B., and H. K. Mitchell: A partial map of linkage group D in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 40, 436–440 (1954).Google Scholar
  207. T. H. Pittenger, and H. K. Mitchell: Pseudowild types in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 38, 569–580 (1952).Google Scholar
  208. Möller, E.: Über Chromatideninterferenz. Z. Vererbungsl. 90, 409–420Google Scholar
  209. Monnot, F.: Sur la localisation du gène S sur quelques particularités du crossing over chez Podospora anserina. C. R. Acad. Sci. (Paris) 236, 2330–2332 (1953).Google Scholar
  210. Morgan, L. V.: A closed x-chromosome in Drosophila melanogaster. Genetics 18, 250–283 (1933).PubMedGoogle Scholar
  211. Morgan, T. H.: An attempt to analyse the constitution of the chromosomes on the basis of sex-linked inheritance in Drosophila. J. exp. Zool. 11, 365–415 (1911a).Google Scholar
  212. —: Random segregation versus coupling in mendelian inheritance. Science 34, 384 (1911b).PubMedGoogle Scholar
  213. —: The theory of the gene. New Haven: Yale University Press 1926.Google Scholar
  214. Morpurgo, G.: Somatic segregation induced by p-fluorophenylalanine. Aspergillus News Letter 2, 10 (1961).Google Scholar
  215. —: Increased frequency of somatic crossing over by X rays in Aspergillus nidulans. Microbial Genet. Bull. 18, 18–20 (1962a).Google Scholar
  216. —: Quantitative measurement of induced somatic segregation in Aspergillus nidulans. Sci. Rep. 1st. sup. Sanità (Roma) 2, 324–329 (1962b).Google Scholar
  217. Morpurgo, G.: Induction of mitotic crossing over in Aspergillus nidulans by bifunctional alkylating agents. Genetics 48, 1259–1263 (1963).PubMedGoogle Scholar
  218. Morpurgo, G., and G. Sermonti: Chemically-induced instabilities in a heterozygous diploid of Penicillium chrysogenum. Genetics 44, 137–152 (1959).PubMedGoogle Scholar
  219. Mortimer, R. K., and D. C. Hawthorne: Chromosome maps of Saccharomyces. Microbial Gen. Bull., Suppl. to No 19 (1963).Google Scholar
  220. Muller, H. J.: Further studies on the nature and causes of gene mutations. Proc. 6th Intern. Congr. Genet. 1, 213–214 (1932).Google Scholar
  221. Mundkur, B. D.: Evidence excluding mutations, polysomy, and polyploidy as possible causes of non-mendelian segregations in Saccharomyces. Ann. Missouri bot. Gard. 26, 259–280 (1949).Google Scholar
  222. —: Irregular segregations in yeast hybrids. Curr. Sci. 19, 84–85 (1950).PubMedGoogle Scholar
  223. Murray, N. E.: The distribution of methionine loci in Neurospora crassa. Heredity 15, 199–206 (1960a).Google Scholar
  224. —: Complementation and recombination between methionine-2 alleles in Neurospora crassa. Heredity 15, 207–217 (1960b).Google Scholar
  225. —: Polarized recombination and fine structure within the me-2 gene of Neurospora crassa. Genetics 48, 1163–1184 (1963).Google Scholar
  226. Nakamura, K.: An ascospore color mutant of Neurospora crassa. Bot. Mag. (Tokyo) 74, 104–109 (1961).Google Scholar
  227. Oehlkers, F.: Meiosis und crossing over. Biol. Zbl. 60, 337–348 (1940a).Google Scholar
  228. —: Meiosis und crossing over. Cytogenetische Untersuchungen an Oenothera. Z. indukt. Abstamm.- u. Vererb.-Lehre 78, 157–168 (1940b).Google Scholar
  229. Ogur, M., S. Minckler, G. Lindegren, and C. C. Lindegren: The nucleic acids in a polyploid series of Saccharomyces. Arch. Biochem. 40, 175–184 (1952).PubMedGoogle Scholar
  230. Olive, L. S.: Genetics of Sordaria fimicola. I. Ascospore colour mutants. Amer. J. Bot. 43, 97–107 (1956).Google Scholar
  231. —: Aberrant tetrads in Sordaria fimicola. Proc. nat. Acad. Sci. (Wash.) 45, 727–732 (1959).Google Scholar
  232. —: Mechanisms of genetic recombination in the fungi. In: G. Dalldorf (edit.), Fungi and fungous diseases. Springfield 1962.Google Scholar
  233. Owen, A. R. G.: The theory of genetical recombination. Advanc. Genet. 3, 117–157 (1950).Google Scholar
  234. Patau, K.: Cytologischer Nachweis einer positiven Interferenz über das Centromer. (Der Paarungskoeffizient I.) Chromosoma (Berl.) 2, 36–63 (1941).Google Scholar
  235. Papazian, H. P.: Physiology of the incompatibility factors in Schizophyllum commune. Bot. Gaz. 112, 143–163 (1950a).Google Scholar
  236. —: A method of isolating the four spores from a single basidium in Schizophyllum commune. Bot. Gaz. 112, 139–140 (1950b).Google Scholar
  237. —: The incompatibility factors and a related gene in Schizophyllum commune. Genetics 36, 441–459 (1951).PubMedGoogle Scholar
  238. —: The analysis of tetrad data. Genetics 37, 175–188 (1952).PubMedGoogle Scholar
  239. —: Cluster model of crossing over. Genetics 45, 1169–1175 (1960).PubMedGoogle Scholar
  240. —: and C. C. Lindegren: A study of irregular quadruplets in S aecharomyces. Genetics 45, 847–854 (1960).PubMedGoogle Scholar
  241. Parag, Y.: Studies on somatic recombination in dikaryons of Schizophyllum commune. Heredity 17, 305–318 (1962).Google Scholar
  242. Parsons, P. A.: Genetical interference in maize. Nature (Lond.) 179, 161–162 (1957).Google Scholar
  243. — Genetical interference in Drosophila spp. Nature (Lond.) 182, 1815–1816 (1958).Google Scholar
  244. Pateman, J. A.: Aberrant recombination at the am locus in Neurospora crassa. Nature (Lond.) 181, 1605–1606 (1958).Google Scholar
  245. — High negative interference at the am locus in Neurospora crassa. Genetics 45, 839–846 (1960a).PubMedGoogle Scholar
  246. — Inter-relationships of the alleles at the am locus in Neurospora crassa. J. gen. Microbiol. 23, 393–399 (1960b).PubMedGoogle Scholar
  247. Payne, L. C.: The theory of genetical recombination: a general formulation for a certain class of intercept length distribution appropriate to the discussion of multiple linkage. Proc. roy. Soc. B 144, 528–544 (1956).Google Scholar
  248. — The theory of genetical recombination: effect of changing the 1/4 <Emphasis Type=“Italic”>χ</Emphasis><Stack><Subscript>4</Subscript><Superscript>2</Superscript></Stack> intercept length distribution. Heredity 11, 129–139 (1957).Google Scholar
  249. Perkins, D. D.: Biochemical mutants in the smut fungus Ustilago maydis. Genetics 34, 607–626 (1949).Google Scholar
  250. Perkins, D. D.: — The detection of linkage in tetrad analysis. Genetics 38, 187–197 (1953).PubMedGoogle Scholar
  251. — Tetrads and crossing over. J. cell. comp. Physiol. 45, 119–149 (1955).Google Scholar
  252. — Crossing over in a multiply marked chromosome arm of Neurospora. Microbial Genet. Bull. 13, 22–23 (1956).Google Scholar
  253. — New markers and multiple point linkage data in Neurospora. Genetics 44, 1185–1208 (1959).PubMedGoogle Scholar
  254. — The frequency in Neurospora tetrads of multiple exchanges within short intervals. Genet. Res. 3, 315–327 (1962a).Google Scholar
  255. — Crossing over and interference in a multiply marked chromosome arm of Neurospora. Genetics 47, 1253–1274 (1962b).PubMedGoogle Scholar
  256. A. S. El-Ani, L. S. Olive and Y. Kitani: Interference between exchanges in tetrads of Sordaria fimicola. Amer. Naturalist 97, 249–252 (1963).Google Scholar
  257. M. Glassey, and B. A. Bloom: New data on markers and rearrangements in Neurospora. Canad. J. Genet. Cytol. 4, 187–205 (1962).Google Scholar
  258. —, and C. Ishitani: Linkage data for group III markers in Neurospora. Genetics 44, 1209–1213 (1959).PubMedGoogle Scholar
  259. —, and N. E. Murray: New markers and linkage data. Neurospora Newsletter 4, 26–27 (1963).Google Scholar
  260. Pittenger, T. H.: The general incidence of pseudo-wild types in Neurospora crassa. Genetics 39, 326–342 (1954).PubMedGoogle Scholar
  261. — Mitotic instability of pseudo-wild types in Neurospora. Proc. 10th Intern. Congr. Genet. 2, 218 (1958).Google Scholar
  262. —, and M. B. Coyle: Somatic recombination in pseudowild-type cultures of Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 49, 445–455 (1963).Google Scholar
  263. Plough, H. H.: The effect of temperature on crossing over in Drosophila. J. exp. Zool. 24, 147–210 (1917).Google Scholar
  264. Pontecorvo, G.: Mitotic recombination in the genetic systems of filamentous fungi. Proc. 9th Intern. Congr. Genet. 1953a.Google Scholar
  265. — The genetics of Aspergillus nidulans. Advanc. Genet. 5, 141–238 (1953 b).Google Scholar
  266. — Mitotic recombination in the genetic systems of filamentous fungi. Caryologia, Vol. suppl. 1–9 (1954).Google Scholar
  267. — Trends in genetic analysis. New York: Columbia University Press 1958.Google Scholar
  268. —, and E. Käfer: Genetic analysis based on mitotic recombination. Advanc. Genet. 9, 71–104 (1958).Google Scholar
  269. —, and J. A. Roper: Genetic analysis without sexual reproduction by means of polyploidy in Aspergillus nidulans. J. gen. Microbiol. 6, VII (1952).Google Scholar
  270. — — Diploids and mitotic recombination. Advanc. Genet. 5, 218–233 (1953).Google Scholar
  271. — — Resolving power of genetic analysis. Nature (Lond.) 178, 83–84 (1956).Google Scholar
  272. — — L. M. Hemmons, K. D. MacDonald and A. W. J. Bufton: The genetics of Aspergillus nidulans. Advanc. Genet. 5, 141–238 (1953).Google Scholar
  273. —, and G. Sermonti: Parasexual recombination in Penicillium chrysogenum. J. gen. Microbiol. 11, 94–104 (1954).PubMedGoogle Scholar
  274. Prakash, V.: Parental and non-parental association of centromeres in Neurospora crassa. 11th Intern. Congr. Genet. 2. The Hague, 1963a (in press).Google Scholar
  275. — Effects of chelating agents on crossing over in Neurospora crassa. Genetica 34, 121–151 (1963b).Google Scholar
  276. — Chromatid interference in Neurospora crassa. Genetics 50, 297–321 (1964).PubMedGoogle Scholar
  277. Prévost, G.: Etude génétique d’un basidiomycète: Coprinus radiatus Fr. ex Bolt. Thèse Fac. de Science, Université Paris 1962.Google Scholar
  278. Pritchard, R. H.: The linear arrangement of a series of alleles of Aspergillus nidulans. Heredity 9, 343–371 (1955).Google Scholar
  279. — Recombination and negative interference in Aspergillus nidulans. Proc. 10th Intern. Congr. Genet. 2, 223–224 (1958).Google Scholar
  280. — Localized negative interference and its bearing on models of gene recombination. Genet. Res. 1, 1–24 (1960).Google Scholar
  281. — Mitotic recombination in fungi. In: W. J. Burdette (edit.), Methodology in basic genetics, pp. 228–246. San Francisco 1963.Google Scholar
  282. Prud’homme, N.: Recombinations chromosomique extra-basidales chez un basidiomycète «Coprinus radiatus» Ann. Génét. 4, 63–66 (1963).PubMedGoogle Scholar
  283. Quintanilha, A.: Le problème de la sexualité chez les Basidiomycètes. Recherches sur le genre „Coprinus“. Bol. soc. Broteriana 8, 1–99 (1933).Google Scholar
  284. Rademacher, L.: Mathematische Theorie der Genkopplung unter Berücksichtigung der Interferenz. J.ber. schles. Ges. vaterl. Kultur 105, 83–92 (1932).Google Scholar
  285. Raper, J. R., M. G. Baxter, and R. B. Middleton: The genetic structure of the incompatibility factors in Schizophyllum commune. Proc. nat. Acad. Sci. (Wash.) 44, 889–900 (1958).Google Scholar
  286. —, and P. G. Miles: The genetics of Schizophyllum commune. Genetics 43, 530–566 (1958).PubMedGoogle Scholar
  287. Regnery, D. C.: A study of the leucineless mutants of Neurospora crassa. Ph. D. Thesis, California Institute of Technology 1947.Google Scholar
  288. Reimann-Philipp, R.: Genetische Untersuchungen an den Tetraden einer höheren Pflanze (Salpiglossis variabilis). Z. indukt. Abstamm.- u. Vererb.-Lehre 87, 187–207 (1955).Google Scholar
  289. Rifaat, O. M.: Genetical studies on the mating-type chromosome of Neurospora crassa. Ph. D. Thesis Cambridge 1956.Google Scholar
  290. — A possible inversion in the mating-type chromosome of Neurospora crassa. Genetica 29, 193–205 (1958).PubMedGoogle Scholar
  291. — Effect of temperature on crossing over in Neurospora crassa. Genetica 30, 312–323 (1959).Google Scholar
  292. Rizet, G., et C. Engelmann: Contribution à l’étude génétique d’un ascomycète tetrasporé: Podospora anserina. Rev. Cytol. Biol. végét. 11, 201–304 (1949).Google Scholar
  293. P. Lissouba et J. Mousseau: Sur l’interférence négative au sein d’une série d’allèles chez Ascobolus immersus. C. R. Soc. Biol. (Paris) 11, 1967–1970 (1960a).Google Scholar
  294. — — — Les mutations d’ascospore chez l’ascomycète Ascobolus immersus et l’analyse de la structure fine des gènes. Bull. Soc. franç. Physiol. Vég. 6, 175–193 (1960b).Google Scholar
  295. —, et J. L. Rossignol: Sur la dissymmétrie de certaines conversions et sur la dimension de l’erreur de copie chez l’Ascobolus immersus. Revista Biol. 3, 261–268 (1963).Google Scholar
  296. Roman, H.: Studies of gene mutation in Saccharomyces. Cold Spr. Harb. Symp. quant. Biol. 21, 175–185 (1956).Google Scholar
  297. — Sur les recombinaisons non réciproques chez Saccharomyces cerevisiae et sur les problèms posés par ces phénomènes. Ann. Génét. 1, 11–17 (1958).Google Scholar
  298. — Genic conversion in fungi. In: W. J. Burdette (edit.), Methodology in basic genetics, pp. 209–227. San Francisco 1963.Google Scholar
  299. D. C. Hawthorne, and H. C. Douglas: Polyploidy in yeast and its bearing on the occurrence of irregular genetic ratios. Proc. nat. Acad. Sci. (Wash.) 37, 79–84 (1951).Google Scholar
  300. —, and F. Jacob: A comparison of spontaneous and ultraviolet-induced allelic recombination with reference to the recombination of outside markers. Cold Spr. Harb. Symp. quant. Biol. 23, 155–160 (1958).Google Scholar
  301. Roper, J. A.: A search for linkage between genes determing vitamin requirements. Nature (Lond.) 166, 956 (1950).Google Scholar
  302. — Production of heterozygous diploids in filamentous fungi. Experientia (Basel) 8, 14–15 (1952).Google Scholar
  303. —, and R. H. Pritchard: The recovery of the complementary products of mitotic crossing over. Nature (Lond.) 175, 639 (1955).Google Scholar
  304. Rossignol, J. L.: Phénomènes de recombinaison intragénique et unite fonctionnelle d’un locus chez l’Ascobolus immersus. Thèse Fac. de Science, Univ. Paris 1964.Google Scholar
  305. Ryan, F. J.: Crossing over and second division segregation in fungi. Bull. Torrey bot. Club 70, 605–611 (1943).Google Scholar
  306. Schwartz, D.: Evidence for sister-strand crossing over in maize. Genetics 38, 251–260 (1953).PubMedGoogle Scholar
  307. — Studies on the mechanism of crossing over. Genetics 39, 692–700 (1954).PubMedGoogle Scholar
  308. Schweitzer, M. D.: An analytical study of crossing over in Drosophila melanogaster. Genetics 20, 497–527 (1935).PubMedGoogle Scholar
  309. Sermonti, G.: Analysis of vegetative segregation and recombination in Penicillium chrysogenum. Genetics 42, 433–443 (1957).PubMedGoogle Scholar
  310. Serres, F. J. de: Studies with purple adenine mutants in Neurospora crassa. I. Structural and functional complexity in the ad-3 region. Genetics 41, 668–676 (1956).PubMedGoogle Scholar
  311. Serres, F. J. de: — Recombination and interference in the ad-3 region of Neurospora crassa. Cold Spr. Harb. Symp. quant. Biol. 23, 111–118 (1958a).Google Scholar
  312. — Studies with purple adenine mutants in Neurospora crassa. III. Reversion of x-ray-induced mutants. Genetics 43, 187–206 (1958b).PubMedGoogle Scholar
  313. — Studies with purple adenine mutants in Neurospora crassa. V. Evidence for allelic complementation among ad-3B mutants. Genetics 48, 351–360 (1963).Google Scholar
  314. — Genetic analysis of the structure of the ad-3 region of Neurospora crassa by means of irreparable recessive lethal mutations. Genetics 50, 21–30 (1964).Google Scholar
  315. Shaw, J.: Asymmetrical segregation of mating type and two morphological mutant loci in Sordaria brevicollis. Bull. Torrey bot. Club 89, 83–91 (1962).Google Scholar
  316. Sherman, F., and H. Roman: Evidence for two types of allelic recombination in yeast. Genetics 48, 255–261 (1963).PubMedGoogle Scholar
  317. Shult, E. E., and S. Desborough: The application to tetrad-analysis-data from Saccharomyces, of principles for establishing the linear order of genetic factors. Genética 31, 147–187(1960).Google Scholar
  318. — — and C. C. Lindegren: Preferential segregation in Saccharomyces. Genet. Res. 3, 196–209 (1962).Google Scholar
  319. —, and C. C. Lindegren: The determination of the arrangement of genes from tetrad data. Cytologia (Tokyo) 20, 291–295 (1955).Google Scholar
  320. — — A general theory of crossing over. J. Genet. 54, 343–357 (1956a).Google Scholar
  321. — — Mapping methods in tetrad analysis. I. Provisional arrangement and ordering of loci preliminary to map construction by analysis of tetrad distribution. Genetica 28, 165–176 (1956b).PubMedGoogle Scholar
  322. — —Orthoorientation: A new tool for genetical analysis. Genetica 29, 58–72 (1957).Google Scholar
  323. — —A survey of genetic methodology from mendelism to tetrad analysis. Canad. J. Genet. Cytol. 1, 189–201 (1959).Google Scholar
  324. Siddiqi, O. H.: The fine genetic structure of the paba-1 region of Aspergillus nidulans. Genet. Res. 3, 69–89 (1962).Google Scholar
  325. —, and A. Putrament: Polarized negative interference in the paba-1 region of Aspergillus nidulans. Genet. Res. 4, 12–20 (1963).Google Scholar
  326. Singleton, J. R.: Cytogenetic studies of Neurospora crassa. Ph. D. Thesis, California Inst. of Technology 1948.Google Scholar
  327. —Chromosome morphology and the chromosome cycle in the ascus of Neurospora crassa. Amer. J. Bot. 40, 124–144 (1953).Google Scholar
  328. Smith, F. H.: Influence of temperature on crossing over in Drosophila. Nature (Lond.) 138, 329–330 (1936).Google Scholar
  329. Spiegelman, S.: Mapping functions in tetrad and recombinant analysis. Science 116, 510–512 (1952).PubMedGoogle Scholar
  330. Srb, A. M.: Ornithine-arginine metabolism in Neurospora and its genetic control. Ph. D. Thesis, Stanford University 1946.Google Scholar
  331. Stadler, D. R.: A map of linkage group VI of Neurospora crassa. Genetics 41, 528–543 (1956a).PubMedGoogle Scholar
  332. —Double crossing over in Neurospora. Genetics 41, 623–630 (1956b).PubMedGoogle Scholar
  333. —Heritable factors influencing crossing over frequency in Neurospora. Microbial. Genet. Bull. 13, 32–34 (1956c).Google Scholar
  334. —Gene conversion of cysteine mutants in Neurospora. Genetics 44, 647 – 655 (1959a).PubMedGoogle Scholar
  335. —The relationship of gene conversion to crossing over in Neurospora. Proc. nat. Acad. Sci. (Wash.) 45, 1625–1629 (1959b).Google Scholar
  336. —Observations on the polaron model for genetic recombination. Heredity 18, 233–242 (1963).PubMedGoogle Scholar
  337. —, and A. M. Towe: Genetic factors influencing crossing over frequency in Neurospora. Genetics 47, 839–846 (1962).PubMedGoogle Scholar
  338. — —Recombination of allelic cysteine mutants in Neurospora. Genetics 48, 1323–1344 (1963).PubMedGoogle Scholar
  339. Stahl, F. W.: A chain model for chromosomes. J. Chim. Phys. 56, 1072–1077 (1961).Google Scholar
  340. —The mechanics of inheritance. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1964.Google Scholar
  341. Stent, G. S.: Molecular biology of bacterial viruses. San Francisco and London 1963.Google Scholar
  342. Stern, C.: An effect of temperature and age on crossing over in the first chromosome of Drosophila melanogaster. Proc. nat. Acad. Sci. (Wash.) 12, 530–532 (1926).Google Scholar
  343. —Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21, 625–730 (1936).PubMedGoogle Scholar
  344. St. Lwrence, P.: The q locus of Neurospora crassa. Proc. nat. Acad. Sci (Wash.) 42, 189–194 (1956).Google Scholar
  345. —, and D. M. Bonner: Gene conversion and problems of allelism. In: W. D. McElroy and B. Glass (edits.), The chemical basis of heredity, pp. 114–122. Baltimore 1957.Google Scholar
  346. Streisinger, G., and N. Franklin: Mutation and recombination at the host range genetic region of phage T 2. Cold Spr. Harb. Symp. quant. Biol. 21, 103–109 (1956).Google Scholar
  347. Strickland, W. N.: Abnormal tetrads in Aspergillus nidulans. Proc. roy. Soc. B 148, 533–542 (1958a).Google Scholar
  348. —An analysis of interference in Aspergillus nidulans. Proc. roy. Soc. B 149, 82–101 (1958b).Google Scholar
  349. —A rapid method for obtaining unordered Neurospora tetrads. J. gen. Microbiol. 22, 583–585 (1960).PubMedGoogle Scholar
  350. —Tetrad analysis of short chromosome regions of Neurospora crassa. Genetics 46, 1125–1141 (1961).PubMedGoogle Scholar
  351. D. D. Perkins, and C. C. Veatch: Linkage data for group V markers in Neurospora. Genetics 44, 1221–1226 (1959).PubMedGoogle Scholar
  352. Stromnaes, Ø., and E. D. Garber: Heterocaryosis and the parasexual cycle in Aspergillus fumigatus. Genetics 48, 653–662 (1962).Google Scholar
  353. Surzycki, S., and A. Paszewski: Non-random segregation of chromosomes in Ascobolus immersus. Genet. Res. 5, 20–26 (1964).Google Scholar
  354. Suyama, Y., K. D. Munkres, and V. W. Woodward: Genetic analyses of the pyr-3 locus of Neurospora crassa: the bearing of recombination and gene conversion upon intraallelic linearity. Genetica 30, 293–311 (1959).PubMedGoogle Scholar
  355. Swiezynski, K. M.: Somatic recombination of two linkage groups in Coprinus lagopus. Genetica Polonica 4, 21–36 (1963).Google Scholar
  356. Tatum, E. L., and T. T. Bell: Neurospora. III. Biosynthesis of thiamin. Amer. J. Bot. 33, 15–20 (1946).Google Scholar
  357. Taylor, J. H.: The time and mode of duplication of the chromosomes. Amer. Naturalist 91, 209–221 (1957).Google Scholar
  358. —The organization and duplication of genetic material. Proc. 10th Intern. Congr. Genet. 1, 63 (1958).Google Scholar
  359. P. S. Woods, and W. L. Hughes: The organization and duplication of chromosomes as revealed by autoradiographic studies using tritiumlabeled thymidine. Proc. nat. Acad. Sci (Wash.) 43, 122–127 (1957).Google Scholar
  360. Teas, H. J.: The biochemistry and genetics of threonine-requiring mutants of Neurospora crassa. Ph. D. Thesis, California Inst. of Technology 1947.Google Scholar
  361. Threlkeld, S. F. H.: Effect of 5-bromouracil on ascus patterns in some Neurospora crosses. Nature (Lond.) 193, 1108–1109 (1962a).Google Scholar
  362. —Some asci with nonidentical sister spores from a cross in Neurospora crassa. Genetics 47, 1187–1198 (1962b).PubMedGoogle Scholar
  363. —Pantothenic acid requirement for spore color in Neurospora crassa. Canap J. Genet. and Cytol. 7, 171–173 (1965).Google Scholar
  364. Towe, A.M.: Factors influencing crossing over in Neurospora. Microbial Genet. Bull. 16, 31–32 (1958).Google Scholar
  365. —, and D. R. Stadler: Effects of temperature on crossing over in Neurospora. Genetics 49, 577–583 (1964).PubMedGoogle Scholar
  366. Wallace, M. E.: Affinity, a new genetic phenomenon in the house mouse. Evidence within laboratory stocks. Nature (Lond.) 171, 27–28 (1953).Google Scholar
  367. —The use of affinity in chromosome mapping. Biometrics 13, 98–110 (1957).Google Scholar
  368. —Experimental evidence for a new genetic phenomenon. Phil. Trans. B 241, 211–254 (1958a).Google Scholar
  369. —New linkage and independence data for ruby and jerker in the mouse. Heredity 12, 453–462 (1958b).Google Scholar
  370. —An experimental test of the hypothesis of affinity. Genetica 29, 243–255 (1959).Google Scholar
  371. —A possible case of affinity in tomatoes. Heredity 14, 275–283 (1960a).Google Scholar
  372. —Possible cases of affinity in cotton. Heredity 14, 263–274 (1960b).Google Scholar
  373. —Affinity: evidence from crossing inbred lines of mice. Heredity 16, 1–23 (1961).Google Scholar
  374. Weijer, J.: Aberrant recombination at the td locus of Neurospora crassa and its mendelian interpretation. Canad. J. Genet. Cytol. 1, 147–160 (1959).Google Scholar
  375. Weinstein, A.: Unraveling the chromosomes. J. cell. comp. Physiol. 45, Suppl. 2, 249–269 (1955).Google Scholar
  376. Welshon, W. J.: A comparative study of crossing over in attached x-chromosomes of Drosophila melanogaster. Genetics 40, 918–936 (1955).Google Scholar
  377. Westergaard, M.: Studies on the mechanism of crossing over. I. Theoretical considerations. C. R. Lab. Carlsberg, Sér. Physiol. 34, 359–405 (1964).Google Scholar
  378. Wettstein, F. v.: Morphologie und Physiologie des Formenwechsels. Z. indukt. Abstamm.- u. Vererb.-Lehre 33, 1–236 (1924).Google Scholar
  379. Wheeler, H. E.: Linkage groups in Glomerella. Amer. J. Bot. 43, 1–6 (1956).Google Scholar
  380. —, and C. H. Driver: Genetics and cytology of a mutant, dwarf-spored Glomerella. Amer. J. Bot. 40, 694–702 (1953).Google Scholar
  381. Whitehouse, H. L. K.: Crossing over in Neurospora. New Phytologist 41, 23–62 (1942).Google Scholar
  382. —Genetics of ascomycetes. Ph. D. Thesis, Cambridge Univ. 1948.Google Scholar
  383. —Multiple-allelomorph heterothallism in the fungi. New Phytologist 48, 212–244 (1949).Google Scholar
  384. —Mapping chromosome centromeres by the analysis of unordered tetrads. Nature (Lond.) 165, 893 (1950).Google Scholar
  385. —Analysis of unordered tetrads segregating for lethal or other epistatic factor. Nature (Lond.) 172, 463–464 (1954).Google Scholar
  386. Whitehouse, H. L. K.: The use of loosely-linked genes to estimate chromatid interference by tetrad analysis. C. R. Lab. Carlsberg, Sér. Physiol. 26, 407–422 (1956).Google Scholar
  387. —Use of tetratype frequencies for estimating spindle overlapping at the second division of meiosis in “ordered” tetrads. Nature (Lond.) 179, 162–163 (1957a).Google Scholar
  388. —Mapping chromosome centromeres from tetratype frequencies. J. Genet. 55, 348–360 (1957b).Google Scholar
  389. —A theory of crossing over by means of hybrid deoxyribonucleic acid. Nature (Lond.) 199, 1034–1040 (1963).Google Scholar
  390. —, and J. B. S. Haldane: Symmetrical and asymmetrical reduction in ascomycetes. J. Genet. 47, 208–212 (1946).PubMedGoogle Scholar
  391. —, and P. J. Hastings: The analysis of genetic recombination on the polaron hybrid DNA model. Genet. Res. (in press) (1965).Google Scholar
  392. Wilkie, D., and D. Lewis: The effect of ultraviolet light on recombination in yeast. Genetics 48, 1701–1716 (1963).PubMedGoogle Scholar
  393. Williams, E. B., and J. R. Shay: The relationship of genes for pathogenicity and certain other characters in Venturia inaequalis (Cke) Wint. Genetics 42, 704–711 (1957).PubMedGoogle Scholar
  394. Winge, Ö., and C. Roberts: Non-mendelian segregation from heterozygotic yeast asci. Nature (Lond.) 165, 157–158 (1950).Google Scholar
  395. — —On tetrad analysis apparently inconsistent with mendelian law. Heredity 8, 295–304 (1954a).Google Scholar
  396. — —Causes of deviations from 2:2 segregations in the tetrads of monohybrid yeasts. C. R. Lab. Carlsberg, Sér. Physiol. 25, 285–329 (1954b).Google Scholar
  397. — —Remarks on irregular segregations in Saccharomyces. Genética 28, 489–496 (1957).PubMedGoogle Scholar
  398. Winkler, H.: Die Konversion der Gene. Jena: Gustav Fischer 1930.Google Scholar
  399. Wolff, S.: Are sister chromatid exchanges sister strand crossovers or radiation-induced exchanges? Mutation Research 1, 337–343 (1964).Google Scholar
  400. Wülker, H.: Untersuchungen über Tetradenaufspaltung bei Neurospora sitophila Shear et Dodge. Z. indukt. Abstamm.- u. Vererb.-Lehre 69, 210–248 (1935).Google Scholar
  401. Zickler, H.: Das Sichtbarwerden der Mendelspaltung im Ascus von Bombardia lunata. Ber. dtsch. bot. Ges. 52, 11–14 (1934 a).Google Scholar
  402. —Genetische Untersuchungen an einem heterothallischen Ascomyceten (Bombardia lunata, nov. spec). Planta (Berl.) 22, 573–613 (1934b).Google Scholar
  403. —Die Vererbung des Geschlechts bei dem Ascomyceten Bombardia lunata Zckl. Z. indukt. Abstamm.- u. Vererb.-Lehre 73, 403–408 (1937).Google Scholar

References which have come to the authors’ attention after conclusion of the German manuscript A IV/V

  1. Berg, C. M.: Biased distribution and polarized segregation in asci of Sordaria brevicollis. Genetics 53, 117–129 (1966).PubMedGoogle Scholar
  2. Chen, K. C.: Evidence for the genetic control of asymmetrical segregation in Sordaria brevicollis. Genetics 50, 240–241 (1964).Google Scholar
  3. —, and L. S. Olive: The genetics of Sordaria brevicollis. II. Biased segregation due to spindle overlap. Genetics 51, 761–766 (1965).PubMedGoogle Scholar
  4. Scott-Emuakpor, M. B.: Random segregation in Neurospora. Genetica 36, 407–411 (1965).Google Scholar

A VI

  1. Cowan, J. W., and D. Lewis: Somatic recombination in the dikaryon of Coprinus lagopus. Genet. Res. 7, 235–244 (1966).Google Scholar
  2. Garber, E. D., and L. Beraha: Genetics of phytopathogenic fungi. XIV. The parasexual cycle in Penicillium expansum. Genetics 52, 487–492 (1965).PubMedGoogle Scholar
  3. Hoffmann, G. M.: Untersuchungen über die Heterokaryosebildung und den Parasexualcyclus bei Fusarium oxysporum. III. Paarungsversuche mit auxotrophen Mutanten von Fusarium oxysporum f. callistephi. Arch. Mikrobiol. 56, 40–59 (1967).PubMedGoogle Scholar
  4. Maluzynski, M.: Recombination in crosses between biochemical mutants of Coprinus lagopus. Acta Soc. Bot. Bol. 35, 191–199 (1966).Google Scholar

B I, 1

  1. Cooke, F.: Recombination values in Neurospora. A pitfall in statistical analysis and application of a correction factor. Canad. J. Genet. Cytol. 8, 733–736 (1966).Google Scholar
  2. Howe, H. B.: Vegetative traits associated with mating type in Neurospora tetrasperma. Mycologia 56, 519–525 (1964).Google Scholar
  3. Pateman, J. A., and B. T. O. Lee: Segregation of polygenes in ordered tetrads. Heredity 15, 351–361 (1960).Google Scholar

B II, 1

  1. Howe, H. B.: Determining mating type in Neurospora without crossing tests. Nature (Lond.) 190, 1036 (1961).Google Scholar
  2. — and P. Haysman: Linkage group establishment in Neurospora tetrasperma by interspecific hybridization with N. crassa. Genetics 54, 293–302 (1966).PubMedGoogle Scholar
  3. Mitchell, M. B.: A model predicting characteristics of genetic maps in Neurospora crassa. Nature (Lond.) 205, 680–682 (1965 a).Google Scholar
  4. — An extended model of periodic linkage in Neurospora crassa. Canad. J. Genet. Cytol. 7, 563–570 (1965b).PubMedGoogle Scholar

B II, 2

  1. Begueret, J.: Sur la répartition en groupes de liaison de gènes concernant la morphologie des ascospores chez le Podospora anserina. C. R. Acad. Sci. (Paris) 264, 462–465 (1967).Google Scholar
  2. McCully, K. S.: The use of p-fluorophenylalanine with “master strains” of Aspergillus nidulans for assigning genes to linkage groups. Genet. Res. 6, 352–359 (1965).PubMedGoogle Scholar

B II, 3

  1. Boucharenc, M., J. Mousseau et J. L. Rossignol: Sur l’action de la température sur la fréquence des recombinaisons réciproques et non réciproques au sein du locus 75 de l’Ascobolus immersus. C. R. Acad. Sci. (Paris) 262, 1589–1592 (1966).Google Scholar
  2. Cameron, H. R., K. S. Hsu, and D. D. Perkins: Crossing over frequency following inbreeding in Neurospora. Genetica 37, 1–6 (1966).PubMedGoogle Scholar
  3. Esposito, R. E., and R. Holliday: The effect of 5-fluorodeoxyuridine on genetic replication and mitotic crossing over in synchronized cultures of Ustilago maydis. Genetics 50, 1009–1017 (1964).PubMedGoogle Scholar
  4. Griffiths, A. J. F., and S. F. H. Threlkeld: Internuclear effects on prototroph frequencies of some crosses in Neurospora crassa. Genetics 54, 77–87 (1966).PubMedGoogle Scholar
  5. Holliday, R.: Induced mitotic crossing-over in relation to genetic replication in synchronously dividing cells of Ustilago maydis. Genet. Res. Camb. 6, 104–120 (1965).Google Scholar
  6. — UV-induced mitotic recombination in the paba 1 region of Aspergillus nidulans. Genetica 35, 127–131 (1964).PubMedGoogle Scholar
  7. Jansen, G. J. O.: UV-induced mitotic recombination in the paba 1 cistron of Aspergillus nidulans. Diss. Utrecht 1966.Google Scholar
  8. Kwiatkowski, Z.: Studies on the mechanism of gene recombination in Aspergillus. I. Analysis of stimulating effect of the removal of some metallic ions on mitotic recombination. Acta microbiol. pol. 14, 3–13 (1965).PubMedGoogle Scholar
  9. Kwiatkowski, Z., and K. Grad: A comparison of the ultraviolet effect on the mitotic recombination in two different cistrons of Aspergillus nidulans. Acta microbiol. pol. 14, 15–18 (1965).PubMedGoogle Scholar
  10. Lavigne, S., and L. C. Frost: Recombination frequency and wild-type ancestry in linkage group I of Neurospora crassa. Genet. Res. Camb. 5, 366–378 (1964).Google Scholar
  11. McNelly-Ingle, C. A., B. C. Lamb, and L. C. Frost: The effect of temperature on recombination frequency in Neurospora crassa. Genet. Res. 7, 169–183 (1966).Google Scholar
  12. Parry, J. M., and B. S. Cox: Photoreactivation of ultraviolet induced reciprocal recombination, gene conversion and mutation to prototrophy in Saccharomyces cerevisiae. J. gen. Microbiol. 402, 235–241 (1965).Google Scholar
  13. Prakash, V.: Intra-chromosomal position interference in Neurospora crassa. Genetica 35, 287–322 (1964).PubMedGoogle Scholar
  14. Scott-Emuakpor, M. B.: Genetic recombination in Neurospora crassa and N. sitophila. Genet. Res. Camb. 6, 216–225 (1965).Google Scholar
  15. Wolff, S., and F. J. de Serres: Chemistry of crossing-over. Nature (Lond.) 213, 1091–1092 (1967).Google Scholar
  16. Zimmermann, F. K., R. Schwaier, and U. v. Laer: Mitotic recombination induced in Saccharomyces cerevisiae with nitrous acid, diethylsulfate and carcinogenic, alkylating nitrosamides. Z. Vererbungsl. 98, 230–246 (1966).PubMedGoogle Scholar

B III, 1

  1. Baker, W. K., and J. A. Swatek: A more critical test of hypotheses of crossing over which involve sister-strand exchange. Genetics 52, 191–202 (1965).PubMedGoogle Scholar
  2. Scott-Emuakpor, M. B.: Interference studies in Neurospora crassa and N. sitophila. Genet. Res. Camb. 6, 226–229 (1965).Google Scholar

B III, 2

  1. Prakash, V.: Intra-chromosomal position interference in Neurospora crassa. Genetica 35, 287–322 (1964).PubMedGoogle Scholar

B IV, 3

  1. Barry, E. G.: Chromosome aberrations in Neurospora and the correlation of chromosomes and linkage groups. Genetics 55, 21–32 (1967).PubMedGoogle Scholar
  2. Chen, K. C.: The genetics of Sordaria brevicollis. I. Determination of seven linkage groups. Genetics 51, 509–517 (1965).PubMedGoogle Scholar
  3. Howe, H. B., and P. Haysman: Linkage group establishment in Neurospora tetrasperma by interspecific hybridization with N. crassa. Genetics 54, 293–302 (1966).PubMedGoogle Scholar
  4. Mortimer, R. K., and D. C. Hawthorne: Genetic mapping in Saccharomyces. Genetics 53, 165–173 (1966).PubMedGoogle Scholar
  5. Paszewski, A., S. Surzycki, and M. Mankowska: Chromosome maps in Ascobolus immersus (Rizet’s strain). Acta Soc. Bot. Pol. 35, 181–188 (1966).Google Scholar

B V, 1

  1. Coyle, M. B., and T. H. Pittenger: Mitotic recombination in pseudowild types of Neurospora. Genetics 52, 609–625 (1965).PubMedGoogle Scholar
  2. Hoffmann, G. M.: Untersuchungen über die Heterokaryosebildung und Parasexualcyclus bei Fusarium oxysporum. III. Paarungsversuche mit auxotrophen Mutanten von Fusarium oxysporum f. callistephi. Arch. Mikrobiol. 56, 40–59 (1967).PubMedGoogle Scholar
  3. Johnston, J. R., and J. M. Mackinnon: Spontaneous and induced mitotic recombination in diploid and tetraploid Saccharomyces. Abstract, 2nd Internat. Symp. on Yeasts, Bratislava 1966.Google Scholar
  4. Maluzynski, M.: Recombination in crosses between biochemical mutants of Coprinus lagopus. Acta Soc. Bot. Pol. 35, 191–199 (1966).Google Scholar
  5. Prud’homme, N.: Somatic recombination in Coprinus radiatus. In: Incompatibility in fungi (K. Esser and J. R. Raper, eds.), p. 48–52. Berlin-Heidelberg-New York: Springer 1965.Google Scholar

C I, 1

  1. Leupold, U., and H. Gutz: Genetic fine structure in Schizosaccharomyces. Proc. XIth Int. Congr. Genetics, The Hague 1964, p. 31–35.Google Scholar
  2. Smith, B. R.: Genetic control of recombination. I. The recombination-2 gene of Neurospora crassa. Heredity 21, 48l–498 (1966).Google Scholar

C I, 2

  1. Barricelli, N. A., and K. Wolfe: Localized negative interference, some of its manifestations and biological function. Z. Vererbungsl. 96, 307–312 (1965).PubMedGoogle Scholar
  2. Bausum, H. T., and R. P. Wagner: “Selfing” and other forms of aberrant recombination in isoleucine-valine mutants of Neurospora. Genetics 51, 815–830 (1965).PubMedGoogle Scholar
  3. Emerson, S., and C. C. C. Yu-Sun: Gene conversion in the pasadena strain of Ascobolus immersus. Genetics 55, 39–47 (1967).PubMedGoogle Scholar
  4. Hartley, M. J., and W. J. Whittington: Possible effect of mitotic recombination on gene conversion and negative interference. Nature (Lond.) 209, 698–700 (1966).Google Scholar
  5. Pees, E.: Polarized negative interference in the lys-51 region of Aspergillus nidulans. Experientia (Basel) 21, 514 (1965).Google Scholar
  6. Putrament, A.: Mitotic recombination in the paba 1 cistron of Aspergillus nidulans. Genet. Res. Camb. 5, 316–327 (1964).Google Scholar
  7. Smith, B. R.: Genetic control of recombination. I. The recombination-2 gene of Neurospora crassa. Heredity 21, 481–498 (1966).PubMedGoogle Scholar

C II, 1

  1. Bausum, H. T., and R. P. Wagner: “Selfing” and other forms of aberrant recombination in isoleucine-valine mutants of Neurospora. Genetics 51, 815–830 (1965).PubMedGoogle Scholar
  2. Emerson, S.: Quantitative implications of the DNA-repair model of gene conversion. Genetics 53, 475–485 (1966).PubMedGoogle Scholar
  3. Hartley, M. J., and W. J. Whittington: Possible effect of mitotic recombination on gene conversion and negative interference. Nature (Lond.) 209, 698–700 (1966).Google Scholar
  4. Holliday, R.: Studies on mitotic gene conversion in Ustilago. Genet. Res. Camb. 8, 323–337 (1966).Google Scholar
  5. Jessop, A. P., and D. G. Catcheside: Interallelic recombination at the his-1 locus in Neurospora crassa and its genetic control. Heredity 20, 237–256 (1965).PubMedGoogle Scholar
  6. Makarewicz, A.: Colourless mutants in Ascobolus immersus with alternative phenotypes. Acta Soc. Bot. Pol. 35, 175–179 (1966).Google Scholar
  7. Mousseau, J.: Sur les variations de fréquence de conversion au niveau de divers sites d’un même locus. C. R. Acad. Sci. (Paris) 262, 1254–1257 (1966).Google Scholar
  8. Paszewski, A., and S. Surzycki: “Selfers” and high mutation rate during meiosis in Ascobolus immersus. Nature (Lond.) 204, 809 (1964).Google Scholar
  9. Picard, M.: La structure d’un locus complexe chez l’Ascomycete Podospora anserina. Théses Fac. Sci. d’Orsay, Univ. de Paris 1966.Google Scholar
  10. Putrament, A.: Mitotic recombination in the paba 1 cistron of Aspergillus nidulans. Genet. Res. Camb. 5, 316–327 (1964).Google Scholar
  11. Rizet, G., et J. L. Rossignol: Sur la dimension probable des échanges réciproques au sein d’un locus complexe d’Ascobolus immersus. C. R. Acad. Sci. (Paris) 262, 1250–1253 (1966).Google Scholar

C II, 2

  1. Kruszewska, A., and W. Gajewski: Recombination within the Y locus in Ascobolus immersus. Genet. Res. Camb. 9, 159–177 (1967).Google Scholar
  2. Pees, E.: Polarized negative interference in the lys-51 region of Aspergillus nidulans. Experientia (Basel) 21, 514 (1965).Google Scholar

C II, 3

  1. Putrament, A.: Mitotic recombination in the paba 1 cistron of Aspergillus nidulans. Genet. Res. Camb. 5, 316–327 (1964).Google Scholar

D

  1. Baker, W. K., and J. A. Swatek: A more critical test of hypotheses of crossing over which involve sister-strand exchange. Genetics 52, 191–202 (1965).PubMedGoogle Scholar
  2. Emerson, S.: Quantitative implications of the DNA-repair model of gene conversion. Genetics 53, 475–485 (1966).PubMedGoogle Scholar
  3. Uhl, C. H.: Chromosome structure and crossing over. Genetics 51, 191–207 (1965).PubMedGoogle Scholar
  4. Whitehouse, H. L. K.: Crossing-over. Sci. Progr. 53, 285–296 (1965).Google Scholar
  5. — An operator model of crossing-over. Nature (Lond.) 211, 708–713 (1966).Google Scholar
  6. — A cycloid model for the chromosome. J. Cell Sci. 2, 9–22 (1967).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1967

Authors and Affiliations

  • Karl Esser
    • 1
  • Rudolf Kuenen
    • 2
  1. 1.Ruhr-Universität BochumGermany
  2. 2.KölnGermany

Personalised recommendations