Foams pp 33-64 | Cite as

Formation and Structure

  • J. J. Bikerman
Part of the Foams book series (APPLIED PHYS, volume 10)


Foams, being colloidal systems, can be prepared either by dispersion or by condensation, which is also known as agglomeration. In the dispersion methods, the future disperse (or discontinuous) phase is initially available as a large volume of gas, and this is then comminuted and mixed with the dispersion medium (often designated as the continuous phase), which, in a foam, is a liquid. In the condensation methods, the future dispersed material originally is present as a solute, that is, as molecules dissolved in the liquid. When these molecules combine to larger aggregates (i.e., bubbles), foams may be obtained.


Surface Tension Contact Angle Capillary Pressure Bubble Diameter Orifice Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davidson, J. F., and B. O. G. Schüler. Trans. Inst. Chem. Eng. 38:144 (1960).Google Scholar
  2. 2.
    Maier, C. G. U.S. Bur. Mines Bull. 260 (1927).Google Scholar
  3. 3.
    Okun, D., and J. K. Baars. Proc. Intern. Congr. Surface Active Subst. 4th Congress, Bruxelles (1964) 2:57 (1967).Google Scholar
  4. 4.
    Kovalski, W. von, and A. Wacker. Ber. 63:1698 (1930).Google Scholar
  5. 5.
    Guyer, A., and E. Peterhans. Helv. Chim. Acta 26:1099 (1943).CrossRefGoogle Scholar
  6. 6.
    Krevelen, D. W. van, and P. J. Hoftijzer. Chenu Eng. Progr. 46:29 (1950).Google Scholar
  7. 7.
    Datta, R. L., D. H. Napier, and D. M. Newitt, Trans. Inst. Client. Eng. 28:14 (1950).Google Scholar
  8. 8.
    Coppock, P. D., and G. T. Meiklejohn. Trans. Inst. Chenu Eng. 29:75 (1951).Google Scholar
  9. 9.
    Bikerman, J. J. J. Appl. Chenu (London) 18:266 (1968).CrossRefGoogle Scholar
  10. 10.
    Achorn, G. B., and J. L. Schwab. Science 107:377 (1948).ADSCrossRefGoogle Scholar
  11. 11.
    Bragg, L., and J. F. Nye. Proc. Roy. Soc. (London) 190A:474 (1947).ADSGoogle Scholar
  12. 12.
    Smith, C. S. J.Appl. Phys. 20:631 (1949).ADSCrossRefGoogle Scholar
  13. 13.
    Neppiras, E. A. J. Acoust. Soc. Am. 46:587 (1969).ADSCrossRefGoogle Scholar
  14. 14.
    Pattle, R. E. Trans. Inst. Chenu Eng. 28:32 (1950).Google Scholar
  15. 15.
    Valentin, F. H. H. Absorption in Gas-Liquid Dispersions. London: Spon Ltd. (1967).Google Scholar
  16. 16.
    Remy, H., and W. Seemann. Kolloid-Z. 72:3 (1935).CrossRefGoogle Scholar
  17. 17.
    Ramakrishnan, S., R. Kumar, and N. R. Kuloor. Chenu Eng. Sci. 24:731 (1969).CrossRefGoogle Scholar
  18. 18.
    Eversole, W. G., G. H. Wagner, and E. Stackhouse. Ind. Eng. Chenu 33: 1459 (1941).CrossRefGoogle Scholar
  19. 19.
    Kupferberg, A., and G. J. Jameson. Trans. Inst. Chenu Eng. 47:T241 (1969).Google Scholar
  20. 20.
    Kippenhan, C., and D. Tegeler. A.I.Ch.E.J. 16:314 (1970).CrossRefGoogle Scholar
  21. 21.
    Potter, O. E. Chenu Eng. Sci. 24:1733 (1969).CrossRefGoogle Scholar
  22. 22.
    Ostwald, W., and A. Siehr. Kolloid-Z. 76:33 (1936).CrossRefGoogle Scholar
  23. 23.
    Satyanarayan, A., R. Kumar, and N. R. Kuloor. Chenu Eng. Sci. 24: 749 (1969).CrossRefGoogle Scholar
  24. 24.
    Bikerman, J. J. Physical Surfaces. New York: Academic Press. (1970), p. 70.Google Scholar
  25. 25.
    Rietema, K., and S. P. P. Ottengraf. Trans. Inst. Chenu Eng. 48:T54 (1970).Google Scholar
  26. 26.
    Melikyan, R. A. Zh. Prikl. Khinu 29: 1792 (1956)Google Scholar
  27. 26a.
    Melikyan, R. A. Zh. Prikl. Khinu 42:2733 (1969).Google Scholar
  28. 27.
    Baxter, R. T., and A. E. Wraith. Chenu Eng. Sci. 25:1244 (1970).CrossRefGoogle Scholar
  29. 28.
    Calderbank, P. H. Chenu Eng. {London} No. 212:CE209 (1967).Google Scholar
  30. 29.
    Bowonder, B., and R. Kumar. Chenu Eng. Sci. 25:25 (1970).CrossRefGoogle Scholar
  31. 30.
    Hofer, M. S., and E: Rubin. Ind. Eng. Chem., Fundamentals. 8:483 (1969).CrossRefGoogle Scholar
  32. 31.
    Lee, J. C., and D. L. Meyrick. Trans. Inst. Chenu Eng. 48:T37 (1970).Google Scholar
  33. 32.
    Gilberg, D., and R. A. Anderson. J. Appl. Phys. 19:127 (1948).ADSCrossRefGoogle Scholar
  34. 33.
    Melsens, Compt. Rend. 20:1658 (1845).Google Scholar
  35. 34.
    Fry, J. F., and R. J. French. J. Appl. Chenu (London) 1:425, 429 (1951).Google Scholar
  36. 35.
    Plateau, J. Mém Acad. Roy. Sci. Belg. 37 (1869), 11th ser.Google Scholar
  37. 36.
    Peterson, H. B., R. R. Neill, and E. J. Jablonski. Ind. Eng. Chenu 48:2031 (1956).CrossRefGoogle Scholar
  38. 37.
    Weatherford, W. D. J. Colloid Interface Sci. 34:197 (1970).CrossRefGoogle Scholar
  39. 38.
    Hirth, J. P., G. M. Pound, and G. R. St. Pierre. Met. Trans. 1:939 (1970).CrossRefGoogle Scholar
  40. 39.
    Florschuetz, L. W., C. L. Henry, and A. Rashid Khan. Intern. J. Heat Mass Transfer 12:1465 (1969).CrossRefGoogle Scholar
  41. 40.
    Krause, A., and K. Kapitanczyk. Kolloid-Z. 80:273 (1937).CrossRefGoogle Scholar
  42. 41.
    Kapitanczyk, K. Chenu Abstr. 44:7119 (1950).Google Scholar
  43. 42.
    Start, J. F., L. Seglin, and B. R. Franko-Filipasik. U.S. 3 423 330 (1969).Google Scholar
  44. 43.
    Gernez, D. Ann. Chinu Phys. [5] 4:335 (1875).MathSciNetGoogle Scholar
  45. 44.
    Dean, R. B. J. Appl. Phys. 15:446 (1944).ADSCrossRefGoogle Scholar
  46. 45.
    Larson, R. F. Ind. Eng. Chem. 37:1004 (1945).CrossRefGoogle Scholar
  47. 46.
    Sernas, V., and F. C. Hooper. Intern. J. Heat Mass Transfer 12:1627 (1969).CrossRefGoogle Scholar
  48. 47.
    Jakob, M. Mech. Eng. 58:643 (1936).Google Scholar
  49. 48.
    Cole, R. A.I.Ch.E.J. 13:779 (1967).CrossRefGoogle Scholar
  50. 49.
    Bewilogua, L., R. Knöner, and H. Vinzelberg. Cryogenics 10:69 (1970).ADSCrossRefGoogle Scholar
  51. 50.
    Wark, I. W. J. Phys. Chem. 37:623 (1933).CrossRefGoogle Scholar
  52. 51.
    Gunther, F. C. Trans. Am. Soc. Mech. Eng. 73:115 (1951).Google Scholar
  53. 52.
    Leaf, W. B., et al. Am. Ry. Eng. Assoc. 45. Bull. 441:58 (1943).Google Scholar
  54. 53.
    Cooper, M. G., and A. J. P. Lloyd. Intern. J. Heat Mass Transfer 12:895 (1969).CrossRefGoogle Scholar
  55. 54.
    Jawurek, H. H. Intern. J. Heat Mass Transfer 12:843 (1969).CrossRefGoogle Scholar
  56. 55.
    Kotake, S. Intern. J. Heat Mass Transfer 13:1595 (1970).CrossRefGoogle Scholar
  57. 56.
    Plateau, J. Mém. Acad. Roy. Sci. Belg. 33 (1861), 6th ser.Google Scholar
  58. 57.
    Plateau, J. Mém. Acad. Roy. Sci. Belg. 33 (1861), 5th ser.Google Scholar
  59. 58.
    Desch, C. H. Rec. Trav. Chim. 42:882 (1923).Google Scholar
  60. 59.
    Manegold, E. Schaum. Heidelberg: Strassenbau, Chemie und Technik, (1953), p. 98.Google Scholar
  61. 60.
    Efremov, G. I., and I. A. Vakhrushev. Izv. Vysshikh Uchebn. Zavedenii neft i gas 6:79 (1968).Google Scholar
  62. 61.
    Schwarz, H. W. Rec. Trav. Chim. 84:771 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1973

Authors and Affiliations

  • J. J. Bikerman

There are no affiliations available

Personalised recommendations