Advertisement

Common Sense Knowledge in Expert Systems

  • Thomas Wetter
Conference paper
Part of the NATO ASI Series book series (volume 35)

Abstract

Common sense forms a considerable part of a personfs knowledge and is involved in expert judgment whenever some non-technical domain is studied. To deal successfully with such domains, expert systems must have common sense knowledge. Common sense is an open domain. So every attempt of a symbolic representation is bound to be incomplete. Nevertheless, the presented examples show that there are some aspects that can be approached by Artificial Intelligence (AI) methods. Among them are:
  • how to enhance predicate calculus to take into account type and relational knowledge about non-unifiable variables, and

  • a suggestion of collecting independently positive and negative evidence which arose from experience from a legal and a medical expert system.

Keywords

Expert System Common Sense Symbolic Representation Artificial Intelligence System Front Seat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alschwee, B., Blaser, A., Lehmann, He., Lehmann, Hu., Schönfeld, W., “Ein juristisches Expertensystem mit natlirlichsprachlichem Dialog — ein Projektbericht,” Proceedings of the International Gl Congress Munich ’85, in Brauer, W. and Radig, B. (eds.), Wissensbasierte Systeme, Informatik-Fachberichte 112, Springer, Berlin Heidelberg New York Tokyo (1985).Google Scholar
  2. Anderson, J.R., “The architecture of cognition,” Harvard University Press, Cambridge, Mass. (1983).Google Scholar
  3. Barnett, B., Lehmann, Hub., Zoeppritz, M., “A Word Database for Natural Language Processing,” Proceedings of Coling ’86, Bonn (1986), pp.435–440.Google Scholar
  4. Buchanan, B.G., Shortliffe, E.H., “Rule-Based Expert Systems — The MYCIN Experiments of the Stanford Heuristic Programming Project,” Addison- Wesley, Reading, Massachusetts (1984).Google Scholar
  5. Card, S.K., Moran, T.P., Newell, A., “The psychology of human-computer interaction,” Erlbaum, Hillsdale, NJ, (1983).Google Scholar
  6. Church, A., “An unsolvable problem of elementary number theory,” American Journal of Mathematics 58 (1936), pp.345–363.MathSciNetCrossRefGoogle Scholar
  7. Dahlgren, K., McDowell, J., “Kind types in knowledge representation,” Proceedings of Coling ’86, Bonn (1986), pp.216–222.Google Scholar
  8. Ericsson, K.A., Simon, H.A., “Verbal reports as data,” Psychological Review 87, (1980), pp.215–251.CrossRefGoogle Scholar
  9. Findler, N.V. (ed.), “Associative Networks,” Academic Press, New York (1979).MATHGoogle Scholar
  10. Hayes, P.J., “The Logic of Frames,” in Metzing, D., Frame conceptions and text understanding, Research in text theory, Vol 5, de Gruyter, Berlin New York (1979), pp.46–61.Google Scholar
  11. Heinen, P., Reusch, H., Richter, M.M., Wetter, Th., “Formal Description of Objects, Processes, and Levels of Expert Reasoning,” in Stoyan, H. (ed.), Proceedings 9th German Workshop Artificial Intelligence GWAI-85, Dassel, September 1985, Springer Informatik Fachberichte 118, Berlin Heidelberg New York Tokyo (1985) pp.285–294.Google Scholar
  12. Hobbs, J.R., Blenko, T., Croft, B., Hager, G., Kautz, H.A., Kube, P., Shoham, Y., “Commonsense Summer: Final Report,” Report No. CSLI-85–35, Center for the Study of Language and Information, Ventura Hall, Stanford, Ca (1985).Google Scholar
  13. Kamp, H. “A Theory of Truth and Semantic Representation,” Groenendijk et al. (eds.), Formal Methods in the Study of Language. Mathematical -Centre Tract, Amsterdam (1981). Reprint in: Groenendijk et al. (eds.), Truth, Representation and Information. GRASS2, Dordrecht: Foris.Google Scholar
  14. Kleene, S.C., “Mathematical Logic,” John Wiley & Sons, Inc. (1967).MATHGoogle Scholar
  15. Kintsch, W., Van Dijk, T.A., “Toward a model of text comprehension and production,” Psychological Review 85 (1978), pp.363–394.CrossRefGoogle Scholar
  16. Kolodner, J.L., “Maintaining organization in a dynamic long-term memory,” Cognitive Science 7 (1983a) pp.243–280.CrossRefGoogle Scholar
  17. Kolodner, J.L., “Reconstructive memory: A computer model,” Cognitive Science 7 (1983b), pp.281–328.CrossRefGoogle Scholar
  18. McDermott, J., “RI: A rule-based configurer of computer systems,” Artificial Intelligence 19 (1982) pp.39–88.CrossRefGoogle Scholar
  19. Minsky, M., “A Framework for Representing Knowledge.” In Winston, P.H. (ed.), The Psychology of Computer Vision, New York, McGraw Hill, (1975).Google Scholar
  20. Minsky, M., “Computation: Finite and infinite machines,” Prentice Hall, Englewood Cliffs, NJ (1967).MATHGoogle Scholar
  21. Newell, A., Simon, H.A., “Human Problem Solving,” Prentice Hall, Engelwood Cliffs, NJ, (1972).Google Scholar
  22. Post, E.L., “Finite combinatory processes-Formulation I,” Journal of Symbolic Logic 1 (1936) pp.103–105.MATHCrossRefGoogle Scholar
  23. Schank, R.C., Abelson, R.P., “Script, plans, goals, and understanding,” Erlbaum, Hillsdale, NJ (1977).Google Scholar
  24. Schmalhofer, F., Schaefer, I:, “Lautes Denken bei der Wahl zwischen benannt und beschrieben dargebotenen Alternativen,” Sprache und Kognition 2, (1986), pp.73–81.Google Scholar
  25. Schmalhofer, F., Wetter, Th., “Kognitive Modellierung: Menschliche Wissensrepräsentationen und Verarbeitungsstrategien,” in Richter, M.M. & Christaller, T. (eds.) Künstliche Intelligenz: Fruhjahrsschule, Dassel 1986, Informatik-Fachberichte, Springer, Berlin Heidelberg New York Tokyo (1987).Google Scholar
  26. Schonfeld, W., “Prolog Extensions Based on Tableau Calculus,” Proceedings of the 9th International Joint Conference on Artificial Intelligence, Vol.2, Los Altos, USA (1985), pp.730–732.Google Scholar
  27. Turing, A.M., “On computable numbers, with an application to the Entscheidungsproblem,” Proceedings of the London Mathematic Society (Series 2) 42 London (1936) pp.230–265.Google Scholar
  28. Walter, C., “A mechanical solution of Schubert’s Steamroller by many-sorted resolution,” Artificial Intelligence 26 (1985) pp.217–224.MathSciNetCrossRefGoogle Scholar
  29. Wetter, Th., “Ein modal logisch beschriebenes Expertensystem,” ausgeführt am Beispiel von Ohrenerkrankungen,” Diss. TH Aachen (1984).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Thomas Wetter
    • 1
  1. 1.IBM - Heidelberg Scientific CenterHeidelbergGermany

Personalised recommendations