Hormones and Insect Behavior

  • L. M. Riddiford
  • J. W. Truman


In insects, hormones are involved in the regulation of behavior to a greater extent than in other invertebrate or vertebrate groups. This extensive adoption of hormonal involvement in the function of the nervous system may be partially due to size restrictions and to the rich behavioral repertoires which insects characteristically show. Hormones, with their ability to reach every cell in the nervous system, are capable of causing widespread changes in responsiveness and thus of radically changing behavior. The use of this kind of hormonal control instead of more complex neural mechanisms may be a major factor in packing a broad array of behaviors into a small, simplified nervous system.


Juvenile Hormone Female Moth Abdominal Ganglion Insect Behavior Modifier Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blest, A.D.: The evolution, ontogeny, and quantitative control of settling movements of some New World saturniid moths, with some comments on distance communication by honey bees. Behaviour 16 188–253 (1960).CrossRefGoogle Scholar
  2. Engelmann, F.: Hormonal control of mating behaviour in an insect. Experientia 16, 69–70 (1960).PubMedCrossRefGoogle Scholar
  3. Engelmann, F.: “The Physiology of Insect Reproduction”, 307 pp. New York: Pergamon Press (1970).Google Scholar
  4. Finlayson, L.H.: Normal and induced degeneration of abdominal muscles during metamorphosis in the Lepidoptera. Q. Jl microsc. Sci. 97 215–234 (1956).Google Scholar
  5. Haskell, P.T., Moorhouse, J.E.: A blood-borne factor influencing the activity of the central nervous system of the desert locust. Nature, Lond. 197, 56–58 (1963).CrossRefGoogle Scholar
  6. Lockshin, R.A.: Programmed cell death. Activation of lysis by a mechanism involving the synthesis of protein. J. Insect Physiol. 15, 1505–1516 (1969).PubMedCrossRefGoogle Scholar
  7. Lockshin, R.A., Williams, C.M.: Programmed cell death. I. Cytology of degeneration in the intersegmental muscles of the Pernyi silkmoth. J. Insect Physiol. 11, 123–133 (1965a).PubMedCrossRefGoogle Scholar
  8. Lockshin, R.A., Williams, C.M.: Programmed cell death. III. Neural control of the breakdown of the intersegmental muscles of the silk-moths. J. Insect Physiol. 11, 601–610 (1965b).PubMedCrossRefGoogle Scholar
  9. Lockshin, R.A., Williams, C.M.: Programmed cell death. IV. The influence of drugs on the breakdown of the intersegmental muscles of silkmoths. J. Insect Physiol. 11, 803–809 (1965c).PubMedCrossRefGoogle Scholar
  10. Loher, W.: The chemical acceleration of the maturation process and its hormonal control in the male of the desert locust. Proc. R. Soc. (B) 153, 380–397 (1961).CrossRefGoogle Scholar
  11. Loher, W.: Die Kontrolle des Weibchengesanges von Gomphooerus rufus L. (Acridinae) durch die Corpora allata. Naturwissenschaften 49, 406 (1962).CrossRefGoogle Scholar
  12. Loher, W., Huber, F.: Experimentelle Untersuchungen am Sexualverhalten des Weibchens der Heuschrecke Gomphooerus rufus L. (Acridinae). J. Insect Physiol. 10, 13–36 (1964).CrossRefGoogle Scholar
  13. Loher, W., Huber, F.: Nervous and endocrine control of sexual behavior in a grasshopper (Gomphooerus rufus L., Acridinae). Symp. Soc. exp. Biol. 20, 381–400 (1966)PubMedGoogle Scholar
  14. Milburn, N.S., Roeder, K.D.: Control of efferent activity in the cockroach terminal abdominal ganglion by extracts of the corpora cardiaca. Gen. comp. Endocr. 2, 70–76 (1962).PubMedCrossRefGoogle Scholar
  15. Milburn, N., Weiant, E.A., Roeder, K.D.: The release of efferent nerve activity in the roach, Periplaneta amerioana, by extracts of the corpus cardiacum. Biol. Bull. mar. biol. Lab., Woods Hole 118, 111–119 (1960).CrossRefGoogle Scholar
  16. Odhiambo, T.R.: Growth and the hormonal control of sexual maturation in the male desert locust, Sohistoceroa gregaria (Forskâl). Trans. R. ent. Soc. Lond. 118, 393–412 (1966).CrossRefGoogle Scholar
  17. Pener, M.P.: Effects of allatectomy and sectioning of the nerves of the corpora allata on oocyte growth, male sexual behaviour, and colour change in adults of Sohistoceroa gregaria. J. Insect Physiol. 13, 665–684 (1967).CrossRefGoogle Scholar
  18. Riddiford, L.M., Ashenhurst, J.B.: The switchover from virgin to mated behavior in female Cecropia moths: the role of the bursa copulatrix. Biol. Bull. mar. biol. Lab., Woods Hole 144, 162–171 (1973).CrossRefGoogle Scholar
  19. Riddiford, L.M., Williams, C.M.: Role of the corpora cardiaca in the behavior of saturniid moths. I. Release of sex pheromone. Biol. Bull. mar. biol. Lab., Woods Hole 140, 1–7 (1971)CrossRefGoogle Scholar
  20. Roeder, K.D., Tozian, L., Weiant, E.A.: Endogenous nerve activity and behaviour in the mantis and cockroach. J. Insect Physiol. 4, 45–62 (1960).CrossRefGoogle Scholar
  21. Schneider, D.: Electrophysiologische Untersuchungen von Chemo-und Mechanoreceptoren der Antenne der Seidenspinners, Bombyx mori L. Z. vergl. Physiol. 40, 8–41 (1957).CrossRefGoogle Scholar
  22. Truman, J.W.: The eclosion hormone: its release by the brain and its action on the central nervous system of silkmoths. Am. Zoologist 10, 511–512 (1970).Google Scholar
  23. Truman, J.W.: Physiology of insect ecdysis. I. The eclosion behaviour of saturniid moths and its hormonal release. J. exp. Biol. 54, 805–814 (1971).Google Scholar
  24. Truman, J.W.: Physiology of insect ecdysis. II. The assay and occurrence of the eclosion hormone in the Chinese oak silkmoth, Antheraea pernyi. Biol. Bull. mar. biol. Lab., Woods Hole 144, 200–211 (1973).CrossRefGoogle Scholar
  25. Truman, J.W., Riddiford, L.M.: Neuroendocrine control of ecdysis in silkmoths. Science, N.Y. 167, 1624–1626 (1970).CrossRefGoogle Scholar
  26. Truman, J.W., Riddiford, L.M.: Role of the corpora cardiaca in the behavior of saturniid moths. II. Oviposition. Biol. Bull. mar. biol. Lab., Woods Hole 140, 8–14 (1971).CrossRefGoogle Scholar
  27. Truman, J.W., Riddiford, L.M.: Hormonal mechanisms underlying insect behavior. Adv. Insect Physiol. 10, (1973).Google Scholar
  28. Truman, J.W., Sokolove, P.G.: Silkmoth eclosion: hormonal triggering of a centrally programmed pattern of behavior. Science, N.Y. 175, 1491–1493 (1972).CrossRefGoogle Scholar
  29. Wilson, E.O., Bossert, W.H.: Chemical communication among animals. Recent Prog. Horm. Res. 19, 673–716 (1963).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • L. M. Riddiford
    • 1
  • J. W. Truman
    • 1
  1. 1.The Biological LaboratoriesHarvard UniversityCambridgeUSA

Personalised recommendations