Insect Flight as a System for the Study of the Development of Neuronal Connections

  • J. S. Altman
  • N. M. Tyrer


Behavioural acts result from patterns of activity in the nervous system and this implies a certain ordering of connections between neurones. The developmental process by which correct contacts between neurones are established must require considerable accuracy and, by investigating the way in which these connections are formed during development, it may be possible to determine the rules which regulate the growth of nerve terminals in the neuropile. In order to do this, it is necessary first to make an exact description of a set of connections and their development. The appearance of a new behaviour pattern implies that new neuronal circuitry has become functional, and this should provide a basis for making this description. This review examines the development of the neural control of locust flight to determine whether it is a suitable system for such an investigation.


Sulphide Cobalt Respiration Meso Prep 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman, J.S.: Changes in the flight motor pattern during the development of the Australian plague locust, Chortoicetes termini fera. I. Development of adult behaviour. (In prep, a)Google Scholar
  2. Altman, J.S.: Changes in the flight motor pattern during the development of the Australian plague locust, Chortoicetes termini fera. II. Establishment of the alternating motor pattern. (In prep, b)Google Scholar
  3. Altman, U.S., Bell, E.M.: A rapid technique for the demonstration of nerve cell bodies in invertebrate central nervous systems. (In prep.)Google Scholar
  4. Bentley, D.R.: Intracellular activity in cricket neurons during the generation of behaviour patterns. J. Insect Physiol. 15, 677–699 (1969).PubMedCrossRefGoogle Scholar
  5. Bentley, D.R.: A topological map of the locust flight system motor neurons. J. Insect Physiol. 16, 905–918 (1970).CrossRefGoogle Scholar
  6. Bentley, D.R.: Postembryonic development of insect motor systems. In “Developmental Neurobiology of Arthropods” (Ed. D. Young), pp. 147–177. London: Cambridge University Press. (1973).Google Scholar
  7. Bentley, D.R., Hoy, R.R.: Postembryonic development of adult motor patterns in crickets: a neural analysis. Science, N.Y. 170, 1409–1411 (1970).CrossRefGoogle Scholar
  8. Braitenberg, V.: Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7, 235–242 (1970).PubMedGoogle Scholar
  9. Burrows, M.: The morphology of an elevator and a depressor motoneuron of the hind wing of a locust. J. comp. Physiol. 83, 165–178 (1973a).CrossRefGoogle Scholar
  10. Burrows, M.: Physiological and morphological properties of the metathoracic common inhibitory neuron of the locust. J. comp. Physiol. 82, 59–78 (1973b).CrossRefGoogle Scholar
  11. Burrows, M.: The role of delayed excitation in the co-ordination of some metathoracic flight motoneurons of a locust. J. comp. Physiol. 83, 135–164 (1973c)CrossRefGoogle Scholar
  12. Camhi, J.M.: Yaw-correcting postural changes in locusts. J. exp. Biol. 52, 519–531 (1970a).Google Scholar
  13. Camhi, J.M.: Sensory control of abdomen posture in flying locusts. J. exp. Biol. 52, 533–537 (1970b).Google Scholar
  14. Campbell, J.I.: The anatomy of the nervous system of the mesothorax of Locusta migratoria migratorioides R.& F. Proc. zool. Soc. Lond. 137, 403–432 (1961).Google Scholar
  15. Cohen, M.J., Jacklet, J.W.: The functional organization of motor neurons in an insect ganglion. Phil. Trans. R. Soc. (B) 252, 561–572 (1967).CrossRefGoogle Scholar
  16. Crossman, A.R., Kerkut, G.A., Pitman, R.M., Walker, R.J.: Electrically excitable nerve cell bodies in the central ganglia of two insect species Periplaneta americana and Schistoceroa gregaria. Investigation of cell geometry and morphology by intracellular dye injection. Comp. Biochem. Physiol. 40, 579–594 (1971).CrossRefGoogle Scholar
  17. Gettrup, E.: Thoracic proprioceptors in the flight system of locusts. Nature, Lond. 193, 498–499 (1962).CrossRefGoogle Scholar
  18. Gettrup, E.: Sensory regulation of wing twisting in locusts. J. exp. Biol. 44, 1–16 (1966).PubMedCrossRefGoogle Scholar
  19. Gewecke, M.: Die Regelung der Fluggeschwindigkeit bei Heuschrecken und ihre Bedeutung für die Wanderflüge. Verh. dt. zool. Ges. 65, 247–250 (1972).Google Scholar
  20. Guthrie, D.M.: Observations on the nervous system of the flight apparatus in the locust Schistocerca gregaria. Q. Jl microsc. Sci. 105, 183–201 (1964).Google Scholar
  21. Gymer, A., Edwards, J.S. The development of the insect nervous system. I. An analysis of postembryonic growth in the terminal ganglion of Acheta domestious. J. Morph. 123, 191–197 (1967).PubMedCrossRefGoogle Scholar
  22. Hinkle, M., Camhi, J.M.: Locust motoneurons: bursting activity correlated with axon diameter. Science, N.Y. 175, 553–556 (1972).CrossRefGoogle Scholar
  23. Hong, C.: Descriptive and experimental studies on the embryonic development of Schistoceroa gregaria (Forskål). Ph.D. Thesis, University of London (1968).Google Scholar
  24. Horridge, G.A., Meinertzhagen, I.A.: The accuracy of the patterns of connexions of the first-and second-order neurons of the visual system of Calliphora. Proc. R. Soc. (B) 175, 69–82 (1970).CrossRefGoogle Scholar
  25. Hoyle, G.: Cellular mechanisms underlying behavior — neuroethology. Adv. Insect Physiol. 7, 349–444 (1970).CrossRefGoogle Scholar
  26. Hoyle, G., Burrows, M.: Neural mechanisms underlying behavior in the locust Schistocerca gregaria. I. Physiology of identified neurons in the metathoracic ganglion. J. Neurobiol. 4, 3–41 (1973).PubMedCrossRefGoogle Scholar
  27. Iles, J.F.: Structure and synaptic activation of the fast coxal depressor motoneurone of the cockroach, Periplaneta americana. J. exp. Biol. 56, 647–656 (1972).PubMedGoogle Scholar
  28. Kendig, J.J.: Motor neurone coupling in locust flight. J. exp. Biol. 48, 389–404 (1968).PubMedGoogle Scholar
  29. Kutsch, W.: The development of the flight pattern in the desert locust, Schistocerca gregaria. Z. vergl. Physiol. 74, 156–168 (1971).CrossRefGoogle Scholar
  30. Marotte, L.R., Mark, R.F.: The mechanism of selective reinnervation of fish eye muscle. II. Evidence from electronmicroscopy of nerve endings. Brain Res. 19, 53–62 (1970).PubMedCrossRefGoogle Scholar
  31. MöSs, D.: Sinnesorgane im Bereich des Flügels der Feldgrille (Gryllus campestris L.) und ihre Bedeutung für die Kontrolle der Singbewegung und die Einstellung der Flügellage. Z. vergl. Physiol. 73, 53–83 (1971).CrossRefGoogle Scholar
  32. Neville, A.C.: Motor unit distribution of the dorsal longitudinal flight muscles in locusts. J. exp. Biol. 40, 123–136 (1963).Google Scholar
  33. Nicholls, J.G., Purves, D.: Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech. J. Physiol., Lond. 209, 647–667 (1970).PubMedGoogle Scholar
  34. Otsuka, M., Kravitz, E.A., Potter, D.D.: Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate. J. Neurophysiol. 30, 725–752 (1967).PubMedGoogle Scholar
  35. Page, C.H.: Unit responses in the metathoracic ganglion of the flying locust. Comp. Biochem. Physiol. 37, 565–571 (1970).CrossRefGoogle Scholar
  36. Panov, A.A.: Correlations in the ontogenetic development of the central nervous system in the house cricket Gryllus domesticus L. and the mole cricket Gryllotalpa gryllotalpa L. (Orthoptera, Grylloidea). Ent. Rev., Wash. 45, 179–185 (1966).Google Scholar
  37. Pitman, R.M., Tweedle, C.D., Cohen, M.J.: Branching of central neurons: intracellular cobalt injection for light and electron miscroscopy. Science, N.Y. 176., 412–414 (1972).CrossRefGoogle Scholar
  38. Sbrenna, G.: Postembryonic growth of the ventral nerve cord in Schistocerca gregaria Forsk. (Orthoptera: Acrididae). Boll. Zool. 38, 49–74 (1971).CrossRefGoogle Scholar
  39. Selverston, A.I., Kennedy, D.: Structure and function of identified nerve cells in the crayfish. Endeavour 28, 107–113 (1969).PubMedGoogle Scholar
  40. Snodgrass, R.E.: The thoracic mechanism of a grasshopper and its antecedents. Smithson. Misc. Colins 82, 1–111 (1929).Google Scholar
  41. Stretton, A.O.W., Kravitz, E.A.: Neuronal geometry: determination with a technique of intracellular dye injection. Science, N.Y. 162, 132–134 (1968).CrossRefGoogle Scholar
  42. Tyrer, N.M., Altman, J.S.: Motor and sensory flight neurones in a locust demonstrated using cobalt chloride. Brain Res. (In press).Google Scholar
  43. Weber, T.: Stabilisierung des Flugrhythmus durch “Erfahrung” bei der Feldgrille. Naturwissenshaften 59, 366 (1972).CrossRefGoogle Scholar
  44. Wilson, D.M.: The central nervous control of flight in a locust. J. exp. Biol. 38, 471–490 (1961).Google Scholar
  45. Wilson, D.M.: Bifunctional muscles in the thorax of grasshoppers. J. exp. Biol. 39, 669–677 (1962).Google Scholar
  46. Wilson, D.M.: The origin of the flight-motor command in grasshoppers. In “Neural Theory and Modeling” (Ed. R. Reiss) pp. 331–345. Stanford: Stanford University Press (1964).Google Scholar
  47. Wilson, D.M.: The nervous control of insect flight and related behavior. Adv. Insect Physiol. 5, 289–338 (1968).CrossRefGoogle Scholar
  48. Wilson, D.M., Gettrup, E.: A stretch reflex controlling wing-beat frequency in grasshoppers. J. exp. Biol. 40, 171–185 (1963).Google Scholar
  49. Wilson, D.M., Wyman, R.J.: Motor output patterns during random and rhythmic stimulation of locust thoracic ganglia. Biophys. J. 5, 121–143 (1965).PubMedCrossRefGoogle Scholar
  50. Young, J.Z.: Centres for touch discrimination in Octopus. Phil. Trans. R. Soc. (B) 249, 45–67 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • J. S. Altman
    • 1
  • N. M. Tyrer
    • 1
  1. 1.Department of Neurobiology, Research School of Biological SciencesAustralian National UniversityCanberra, A.C.T.Australia

Personalised recommendations