Nuclear Magnetic Resonance

  • Donald F. H. Wallach
  • Richard J. Winzler


The nuclei of many atoms constitute spinning charges, whose oscillating electric fields induce localized magnetic moments, which can be oriented in an applied magnetic field. Absorption of electromagnetic radiation of appropriate frequency (range 1–220 MHz) can raise the potential energy of the nuclei, forcing realignment of their magnetic moments in the applied field. Nuclear magnetic resonance (NMR) utilizes this and closely related phenomena, essentially measuring the energy required for realignment. Its physical principles have been rigorously treated (e.g., 1–2), and excellent reviews are available on its application to biological molecules in general (e.g., 3) and to lipids (e.g., 4). Here we shall limit comment mainly to the utility of NMR in the study of model and biomembranes, stressing that this technique, like infrared spectroscopy and optical activity measurements, mirrors primarily certain properties of intrinsic membrane components. Specifically, NMR signals the mobility of various nuclei.


Proton Magnetic Resonance Sodium Dodecyl Sulfate Proton Magnetic Resonance Spectrum Acyl Chain Erythrocyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abragam, A. The Principles of Nuclear Magnetism, Oxford: Clarendon Press, 1961.Google Scholar
  2. 2.
    Pople, J. A., Schneider, W. B., and Bernstein, H. J. High Resolution Nuclear Magnetic Resonance. New York: McGraw-Hill, 1959.Google Scholar
  3. 3.
    Kowalsky, A., and Cohn, M. Ann. Rev. Biochem. 33: 481, 1964.PubMedCrossRefGoogle Scholar
  4. 4.
    Chapman, D. The Structure of Lipids. London: Methuen, 1965, p. 160.Google Scholar
  5. 5.
    Patt, L. S., and Sykes, B. D. J. Chem. Phys. 56: 3182, 1972.CrossRefGoogle Scholar
  6. 6.
    Stewart, W. E., Mandelkern, L., and Glick, R. E. Biochemistry 6: 143, 1967.PubMedCrossRefGoogle Scholar
  7. 7.
    Bradbury, E. M., Crane-Robinson, C., and Rattle, H. W. E. Nature 216: 862, 1967.PubMedCrossRefGoogle Scholar
  8. 8.
    Boublik, M., Bradbury, E. M., Crane-Robinson, C., and Rattle, H. W. E. Eur. J. Biochem. 12: 258, 1970.PubMedCrossRefGoogle Scholar
  9. 9.
    Bradbury, E. M., Crane-Robinson, C., Goldman, H., and Rattle, H. W. E. Nature 217: 812, 1968.PubMedCrossRefGoogle Scholar
  10. 10.
    Markley, J. L., Meadows, D. H., and Jardetzky, O. J. Mol. Biol. 27: 25, 1967.PubMedCrossRefGoogle Scholar
  11. 11.
    Bradbury, E. M., and Crane-Robinson, C. Nature 220: 1079, 1968.PubMedCrossRefGoogle Scholar
  12. 12.
    Cohen, J. S., and Jardetzky, O. Proc. Natl. Acad. Sci. (U.S.) 60: 92, 1968.CrossRefGoogle Scholar
  13. 13.
    Bradbury, E. M., Crane-Robinson, C., Goldman, H., Rattle, H. W. E., and Stephens, R. M. J. Mol. Biol. 29: 507, 1967.CrossRefGoogle Scholar
  14. 14.
    Hollis, D. P., McDonald, G., and Biltonen, R. L. Proc. Natl. Acad. Sci. (U.S.) 58: 758, 1967.CrossRefGoogle Scholar
  15. 15.
    Raferty, M. A., Dahlquist, F. W., Parsons, S. M., and Wolcott, R. G. Proc. Natl. Acad. Sci. (U.S.) 62: 44, 1969.CrossRefGoogle Scholar
  16. 16.
    Crespi, H. L., and Katz, J. J. Nature 224: 560, 1969.CrossRefGoogle Scholar
  17. 17.
    Chapman, D., Richards, R. E., and Yorke, R. W. Nature 183: 44, 1959.PubMedCrossRefGoogle Scholar
  18. 18.
    Chapman, D., Richards, R. E., and Yorke, R. W. J. Amer. Oil Chem. Soc. 5: 243, 1960.CrossRefGoogle Scholar
  19. 19.
    Chapman, D., and Morrison, A. J. Biol. Chem. 241: 5044, 1966.PubMedGoogle Scholar
  20. 20.
    Chapman, D., and Salsbury, N. Trans. Faraday Soc. 62: 2607, 1966.CrossRefGoogle Scholar
  21. 21.
    Vesksli, A., Salisbury, N. J., and Chapman, D. Biochim. Biophys. Acta 183: 434, 1969.CrossRefGoogle Scholar
  22. 22.
    Salsbury, N. J., and Chapman, D. Biochim. Biophys. Acta 163: 314, 1968.PubMedCrossRefGoogle Scholar
  23. 23.
    Chan, S. I., Feigenson, G. W., and Seiter, C. H. A. Nature (Lond.) 231: 110, 1971.CrossRefGoogle Scholar
  24. 24.
    Oldfield, E., and Chapman, D. FEBS Letters 21: 303, 1972.PubMedCrossRefGoogle Scholar
  25. 25.
    Oldfield, E., Chapman, D., and Derbyshire, W. FEBS Utters 16: 102, 1971.CrossRefGoogle Scholar
  26. 26.
    Salsbury, N. J., and Harris, P. quoted by D. Chapman and G. H. Dodd, in Structure and Function of Biological Membranes, L. I. Rothfield, ed. New York: Academic Press, 1971, p. 28.Google Scholar
  27. 27.
    Small, D. M. J. Lipid Res. 8: 551, 1967.PubMedGoogle Scholar
  28. 28.
    Chapman, D., Williams, R. M., and Ladbrooke, B. D. Chem. Phys. Lipids 1: 445, 1967.CrossRefGoogle Scholar
  29. 29.
    Chapman, D., and Penkett, S. A. Nature 211: 1304, 1966.PubMedCrossRefGoogle Scholar
  30. 30.
    Chapman, D., Fluck, D. J., Penkett, S. A., and Shipley, G. G. Biochim. Biophys. Acta 163: 255, 1968.PubMedCrossRefGoogle Scholar
  31. 31.
    Penkett, S. A., Flook, A. G., and Chapman, D. Chem. Phys. Lipids 2: 273, 1968.CrossRefGoogle Scholar
  32. 32.
    Steim, J. M. Adv. in Chem. Ser. 84: 259, 1968.CrossRefGoogle Scholar
  33. 33.
    Sheard, B. Nature (Lond.) 223: 1057, 1969.CrossRefGoogle Scholar
  34. 34.
    Chapman, D. Ann. N.Y. Acad. Sci. 195: 179, 1972.PubMedCrossRefGoogle Scholar
  35. 35.
    Finer, E. G. F., Flook, A. G., and Hauser, H. FEBS Letters 18: 331, 1971.PubMedCrossRefGoogle Scholar
  36. 36.
    Joly, M. A Physicochemical Approach to the Denaturation of Proteins. New York. Academic Press, 1965, pp. 9–16.Google Scholar
  37. 37.
    Grabar, P. Biol. Med. Phys. 3: 191, 1953.Google Scholar
  38. 38.
    Hughes, D. E. In Ultrasonic Energy, E. Kelly, ed. Urbana, Ill.: Univ. of Illinois Press, 1965, p. 9.Google Scholar
  39. 39.
    Wilkins, M. H. F., Blaurock, A. E., and Engelman, D. M. Nature 230: 72, 1971.CrossRefGoogle Scholar
  40. 40.
    Chapman, D. In Biological Membranes, D. Chapman and D. F. H. Wallach, eds. New York: Academic Press, 1973, p. 91.Google Scholar
  41. 41.
    Hubbell, W. L., and McConnell, H. M. Proc. Natl. Acad. Sci. (U.S.) 61: 12, 1968.CrossRefGoogle Scholar
  42. 42.
    Barratt, M. D., Green, D. K., and Chapman, D. Chem. Phys. Lipids 3: 140, 1969.PubMedCrossRefGoogle Scholar
  43. 43.
    Bergelson, L. D., Barsukov, L. I., Dubrovina, N. I., and Bystrov, V. F. Dokl. Akad. Nauk. SSSR, 194: 708, 1970.Google Scholar
  44. 44.
    Byshou, V. F. B., Dubrovina, N. I., Barsukow, L. J., and Bergelson, L. D. Chem. Phys. Lipids 6: 343, 1971.CrossRefGoogle Scholar
  45. 45.
    Levine, Y. K., Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C., and Robinson, J. D. Biochim. Biophys. Acta 291: 592, 1973.PubMedCrossRefGoogle Scholar
  46. 46.
    James, T. L., and Noggle, J. H. J. Am. Chem. Soc. 91: 3429, 1969.CrossRefGoogle Scholar
  47. 47.
    James, T. L., and Noggle, J. H. Proc. Natl. Acad. Sci. (U.S.) 62: 644, 1969.CrossRefGoogle Scholar
  48. 48.
    James, T. L., and Noggle, J. H. Anal. Biochem. 49: 208, 1972.PubMedCrossRefGoogle Scholar
  49. 49.
    Batchelor, J. C., Prestegard, J. H., Cuschley, R. J., and Lipskey, S. R. Biochem. Biophys. Res. Comm. 48: 70, 1972.PubMedCrossRefGoogle Scholar
  50. 50.
    Chapman, D., and Penkett, S. A. Nature (Lond.) 211: 1304, 1966.CrossRefGoogle Scholar
  51. 51.
    Darke, A., Finer, E. G., Flook, A. G., and Phillips, M. C. J. Mol. Biol. 63: 265, 1972.PubMedCrossRefGoogle Scholar
  52. 52.
    Lee, A. G. L., Birdsall, N.J. M., Levine, Y. K., and Metcalfe, J. C. Biochim. Biophys. Acta 255: 43, 1972.PubMedCrossRefGoogle Scholar
  53. 53.
    Birdsall, N. J. M., Lee, A. G., Levine, Y. K., and Metcalfe, J. C. Biochim. Biophys. Acta 241: 693, 1971.PubMedCrossRefGoogle Scholar
  54. 54.
    Metcalfe, J. C., Birdsall, N.J. M., Fenney, J., Lee, A. G., Levine, Y. K., and Partington, P. Nature 233: 199, 1971.PubMedCrossRefGoogle Scholar
  55. 55.
    Horwitz, G. A. F., Horsley, W. J., and Klein, M. P. Proc. Natl. Acad. Sci. (U.S.) 69: 590, 1972.CrossRefGoogle Scholar
  56. 56..
    Keough, K. M., Oldfield, E., Chapman, D., and Beynon, P. Chem. Phys. Lipids (in press).Google Scholar
  57. 57.
    Jendresiak, G. L.J. Chem. Phys. Lipids 6: 215, 1971.CrossRefGoogle Scholar
  58. 58.
    Hammes, G. G. H., and Tallman, D. E. T. Biochim. Biophys. Acta 233: 17, 1971.PubMedCrossRefGoogle Scholar
  59. 59.
    Finer, E. G., Hauser, H., and Chapman, D. Colloquium der Gesellschaft fur Physiol. Chem. 20: 368, 1969.Google Scholar
  60. 60.
    Steim, J. M., Edner, O. J., and Bargoot, F. G. Science 162: 909, 1968.PubMedCrossRefGoogle Scholar
  61. 61.
    Barratt, M. D., and Rayner, L. Biochim. Biophys. Acta 255: 974, 1972.PubMedCrossRefGoogle Scholar
  62. 62.
    Leslie, R. B., Chapman, D., and Scanu, A. M. Chem. Phys. Lipids 3: 152, 1969.PubMedCrossRefGoogle Scholar
  63. 63.
    Chapman, D., Leslie, R. B., Hirz, R., and Scanu, A. M. Biochim. Biophys. Acta 176: 524, 1969.PubMedGoogle Scholar
  64. 64.
    Scanu, A. M., Reader, W., and Edelstein, C. Biochim. Biophys. Acta 160: 32.Google Scholar
  65. 65.
    Ladbrooke, B. D., Williams, R. M., and Chapman, D. Biochim. Biophys. Acta 150: 333, 1968.PubMedCrossRefGoogle Scholar
  66. 66.
    Bruckdorfer, K. R., and Green, C. Biochem. J. 104: 270, 1967.PubMedGoogle Scholar
  67. 67.
    Dodge, J. T., Mitchell, C., and Hanahan, D.J. Arch. Biochem. Biophys. 100: 119, 1963.PubMedCrossRefGoogle Scholar
  68. 68.
    Chapman, D., Kamat, V. B., deGier, J., and Penkett, S. A. J. Mol. Biol. 31: 101, 1968.PubMedCrossRefGoogle Scholar
  69. 69.
    Kamat, V. B., and Chapman, D. Biochim. Biophys. Acta 163: 411, 1968.PubMedCrossRefGoogle Scholar
  70. 70.
    Glaser, M., Simpkins, H., Singer, S. J., Sheetz, M., and Chan, S. J. Proc. Natl. Acad. Sci. (U.S.) 65: 721, 1970.CrossRefGoogle Scholar
  71. 71.
    Levine, Y. K., Birdsall, N.J. M., Lee, A. G., and Metcalfe, J. C. Biochemistry 11:416, 1972.CrossRefGoogle Scholar
  72. 72.
    Magnuson, J. A., Shelton, D. S., and Magnuson, N. S. Biochem. Biophys. Res. Comm. 39: 279, 1970.PubMedCrossRefGoogle Scholar
  73. 73.
    Jenkinson, T. J., Kamat, V. B., and Chapman, D. Biochim. Biophys. Acta 183: 427, 1969.PubMedCrossRefGoogle Scholar
  74. 74.
    Dea, P., Chan, S. I., and Dea, F. J. Science 175: 206–9, 1972.PubMedCrossRefGoogle Scholar
  75. 75.
    Davis, D. G., and Inesi, G. Biochim. Biophys. Acta 241: 1, 1971.PubMedCrossRefGoogle Scholar
  76. 76.
    Robinson, J. D., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C. Biochemistry 11: 290, 1972.CrossRefGoogle Scholar
  77. 77..
    Steim, J. M. In Thermal Phase Transitions in Biomembranes (in press).Google Scholar
  78. 78.
    Melchior, D. L., Morowitz, H. J., Sturtevant, J. M., and Tsong, T. Y. Biochim. Biophys. Acta 219: 114, 1970.PubMedCrossRefGoogle Scholar
  79. 79.
    Chapman, D., and Urbina, J. FEBS Letters 12: 169, 1971.PubMedCrossRefGoogle Scholar
  80. 80.
    Steim, J. M. In Liquid Crystals and Ordered Fluids, R. S. Porter and J. F. Johnson, eds. New York: Plenum Press, 1970.Google Scholar
  81. 81.
    Oldfield, E., Chapman, D., and Derbyshire, W. Chem. Phys. Lipids 9: 69, 1972.PubMedCrossRefGoogle Scholar
  82. 82.
    Fischer, J. J. F., and Jost, M. C. J. Mol. Pharmacol. 5: 420, 1969.Google Scholar
  83. 83.
    Rosenberg, S. A., and Guidotti, G. In Red Cell Membranes: Structure and Function, G. A. Jamieson and T. J. Greenwalt, eds. Philadelphia: J. B. Lippincott, 1969, p. 93.Google Scholar
  84. 84.
    Chapman, D., and Kamat, V. B. In Regulatory Functions of Biological Membranes, J. Järnefelt, ed. Amsterdam/London/New York: Elsevier, 1968, B. B. A. Library, vol. 11, p. 99.Google Scholar
  85. 85.
    Wallach, D. F. H. J. Gen. Physiol. 54: 3s, 1969.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • Donald F. H. Wallach
  • Richard J. Winzler

There are no affiliations available

Personalised recommendations