Skip to main content

The Spontaneous Mutation Rate

  • Chapter

Abstract

Inasmuch as heritable changes are primarily caused by mutations affecting individual cistrons within the genome, the accurate estimation of the spontaneous mutation rate is of the utmost importance in understanding evolution. Furthermore, in view of the fact that a mutation randomly affects a single base pair of any cistron and that only some of the mutations are permitted by natural selection to accompany the process of speciation, we should also have some idea about relative proportions with regard to forbidden versus tolerable mutations. In practice, it is convenient to consider the spontaneous mutation rate either in terms of per locus per generation or per base pair per generation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, D.W.: Heritable histocompatibility changes: Lysogeny in mice?. Transplantation 4, 482–488 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Baker, C.M.A., Manwell, C.: Molecular genetics of avian proteins. VIII. Egg white proteins of the migratory quail, Coturnix coturnix. New concepts of “hybrid vigour”. Comp. Biochem. Physiol. 23, 21–42 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Bender, K., Ohno, S.: Duplication of the autosomally inherited 6-phosphogluconate dehydrogenase gene locus in tetraploid species of Cyprinid fish. Biochem. Genet. 2, 101–107 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W.M.: An improved method of testing for evolutional homology. J. Mol. Biol. 16, 9–16 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Harris, H.: Enzyme and protein polymorphism. Brit. Med. Bull. 25, 5–13 (1969).

    PubMed  CAS  Google Scholar 

  • Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Crow, J.F.: The number of alíeles that can be maintained in a finite population. Genetics 49, 725–738 (1964).

    PubMed  CAS  Google Scholar 

  • Lyon, M.F.: Some evidence concerning the “mutational load” in inbred strains of mice. Heredity 13, 334–352 (1959).

    Google Scholar 

  • Margoliash, E.: Sequence and structure of Cytochrome C. Advances in Protein Chem. 21, 113–286 (1966).

    CAS  Google Scholar 

  • Ohno, S., Stenius, C., Christian, L.C., Harris, C.: Synchronous activation of both parental alíeles at the 6-PGD locus of Japanese quail embryos. Biochem. Genet. 2, 197–204 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Schipmann, G.: De novo mutation-like events observed at the 6-PGD locus of the Japanese quail, and the principle of polymorphism breeding more polymorphism. Biochem. Genet. 3, 417–428 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Parr, C.W.: Erythrocyte phosphogluconate dehydrogenase polymorphism. Nature 210, 487–489 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Russell, W.L.: X-ray induced mutations in mice. Cold Spring Harbor Symposia Quant. Biol. 16, 327–336 (1951).

    Article  CAS  Google Scholar 

  • Salthe, S.N.: Geographic variation of the lactate dehydrogenases of Rana pipiens and Rana palustris. Biochem. Genet. 2, 271–304 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Shaw, C.R.: Electrophoretic variation in enzymes. Science 149, 936–943 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Slatis, H.M.: Comments on the rate of mutation to chondrodystrophy in man. Am. J. Human Genet. 7, 76–79 (1955).

    CAS  Google Scholar 

  • Stevenson, A.C.: Comparisons of mutation rates at single loci in man. In: Effect of radiation on human heredity, pp. 125–137. Geneva: World Health Organization 1957.

    Google Scholar 

  • Stormont, C.: Mammalian immunogenetics. In: Genetics today (Geerts, S.J., Ed.), Vol. 3, Chapter 19, pp. 716–722. New York: Pergamon Press 1965.

    Google Scholar 

  • Thüline, H.C., Morrow, A.C., Norby, D.E., Motulsky, A.G.: Autosomal phosphogluconic dehydrogenase polymorphism in the cat. (Felts cattus L.). Science 157, 431–432 (1967).

    Google Scholar 

  • Whitfield, H.J., Martin, R.G., Ames, B.N.: Classification of aminotransferase (C gene) mutants in the histidine operon. J. Mol. Biol. 21, 335–355 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Wright, J.E., Atherton, L.: Genetic control of interallelic recombination at the LDH B locus in brook trout. Genetics 60, 240 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ohno, S. (1970). The Spontaneous Mutation Rate. In: Evolution by Gene Duplication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86659-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86659-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86661-6

  • Online ISBN: 978-3-642-86659-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics