Evolution from Amphibians to Birds and Mammals and the Abrupt Cessation of Nature’s Experiment at the Reptilian Stage

  • Susumu Ohno

Abstract

In Table 5, frogs and toads of the order Anura (descendants of the main labyrinthodont lineage of early amphibians) are compared to salamanders and newts of Urodela (lepospondyls side branch). It immediately becomes clear that their genomes reflect the fact that the two belong to different lineages.

Keywords

Permian Lactate Gall Devonian NADP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allfrey, V.G., Mirsky, A.E., Stern, H.: The chemistry of the cell nucleus. Advances in Enzymol. 16, 411–500 (1955).Google Scholar
  2. Atkin, N.B., Mattinson, G., Becak, W., Ohno, S.: The comparative DNA content of 19 species of placental mammals, reptiles and birds. Chromosoma 17, 1–10 (1965).PubMedCrossRefGoogle Scholar
  3. Becak, W., Becak, M.L., Nazareth, H.R.S.: Karyotypic studies of two species of South American snakes (Boa constrictor amarali and Bothrops jararaca). Cytogenetics 1, 305–313 (1962).PubMedCrossRefGoogle Scholar
  4. Ohno, S.: Close karyological kinship between the reptilian suborder Serpentes and the class Aves. Chromosoma 15, 606–617 (1964).PubMedCrossRefGoogle Scholar
  5. Lavalle, D., Schreiber, G.: Further studies on polyploid amphibians (Ceratophrydidae). II. DNA content and nuclear volume. Chromosoma 23, 14–23 (1967).Google Scholar
  6. Bick, Y.A., Jackson, W.D.: DNA content of monotremes. Nature 215, 192–193 (1967).PubMedCrossRefGoogle Scholar
  7. Cohen, M.M., Clark, H.F.: The somatic chromosomes of five crocodilian species. Cytogenetics 6, 193–203 (1967).PubMedCrossRefGoogle Scholar
  8. di Berardino, M.A.: The karyotype of Rana pipiens and investigation of its stability during embryonic differentiation. Develop. Biol. 5, 101–126 (1962).CrossRefGoogle Scholar
  9. Donnelly, G.M., Sparrow, A.H.: Karyotype and revised chromosome number of Amphiuma. Nature 199, 1207 (1963).PubMedCrossRefGoogle Scholar
  10. Fankhauser, G., Humphrey, R.R.: The origin of spontaneous heteroploids in the progeny of diploid, triploid, and tetraploid axolotl females. J. Exptl. Zool. 142, 379–422 (1959).CrossRefGoogle Scholar
  11. Gorman, G.C., Atkins, L.: Chromosomal heteromorphism in some male lizards of the genus Anolis. Am. Naturalist 100, 579–583 (1966).CrossRefGoogle Scholar
  12. Kezer, J., Seto, T., Pomerat, C.M.: Cytological evidence against parallel evolution of Necturus and Proteus. Am. Naturalist 99, 153–158 (1965).CrossRefGoogle Scholar
  13. Kobel, H.R.: Heterochromosomen bei Vipera berus L. (Viperidae, Serpentes). Experientia 18, 173–174 (1962).PubMedCrossRefGoogle Scholar
  14. Leuchtenberger, C., Vendrely, R., Vendrely, C.: A comparison of the content of desoxyribose nucleic acid (DNA) in isolated animal nuclei by cytochemical and chemical methods. Proc. Natl. Acad. Sci. US 37, 33–38 (1951).CrossRefGoogle Scholar
  15. Mandel, P., Métais, P., Cuny, S.: Les quantités d’acide désoxypentose-nucléique par leucocyte chez diverse espèces de Mammifères. Compt. rend. 231, 1172–1174 (1950).Google Scholar
  16. Matthey, R.: Les chromosomes des vertébrés. Lausanne (Switzerland) 1949.Google Scholar
  17. — La formule chromosomique et le problème de la détermination sexuelle chez Ellobius lutescens Thomas. Rodentia-Muridae-Microtinae Arch. Julius Klaus-Stift. Vererbungsforsch. Sozialanthropol. u. Rassenhyg. 28, 65–73 (1953).Google Scholar
  18. Mirsky, A.E., Ris, H.: Variable and constant components of chromosomes. Nature 163, 666–667 (1949).PubMedCrossRefGoogle Scholar
  19. Ohno, S.: Sex chromosomes and sex-linked genes (Labhart, A., Mann, T., Samuels, L.T., Eds.), Vol. I. Monographs on Endocrinology. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  20. Jainchill, J., Stenius, C.: The creeping vole (Microtus oregoni) as a gonosomic mosaic I. The OY/XY constitution of the male. Cytogenetics 2, 232–239 (1963).Google Scholar
  21. Schmid, W., Leppert, M.F.: Karyotyp Heterochromatin und DNS-Werte bei 13 Arten von Wühlmäusen (Microtinae, Mammalia, Rodentia). Arch. Julius Klaus-Stift. Vererbungsforsch. Sozialanthropol. u. Rassenhyg. 43, 88–91 (1968).Google Scholar
  22. van Brink, J.M.: L’expression morphologique de la Digamétie chez les Sauropsidés et les monotrèmes. Chromosoma 10, 1–72 (1959).CrossRefGoogle Scholar
  23. Yamashina, Y.: Studies on the chromosomes in 25 species of birds. Genetics 2, 27–38 (1951).Google Scholar

Copyright information

© Springer Science+Business Media New York 1970

Authors and Affiliations

  • Susumu Ohno
    • 1
  1. 1.Department of BiologyCity of Hope Medical CenterDuarteUSA

Personalised recommendations