Thermodynamic Control of Metamorphic Processes

  • L. L. Perchuk


The distribution of cations in coexisting minerals of various metamorphic rocks has been studied, using the principles of Sobolev and Ramberg to explain the relationship between crystal energetic parameters such as polarization of oxygen ions in silicates of differing structures and the distribution of cations. Statistical studies of distribution coefficients in rocks of low to high metamorphic grade have resulted in the formulation of several geothermometers and geobarometers. This formulation should be regarded as an attempt to systematize the theory, data and application of the crystal-chemical and thermodynamic principles to understand metamorphic and igneous processes. The results from the different thermo- and baro-meters are internally consistent and have been used to evaluate partial pressures of O2, H2O, and CO2 in the fluid phase in metamorphic processes. The metamorphic processes are dependent on the geotectonic processes and, therefore, the study of the P-T regimes of metamorphism cannot be separated from the study of the geodynamic evolution of the crust.


Metamorphic Rock Exchange Equilibrium Geodynamic Process Contact Metamorphism Aldan Shield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akimoto, S., Fujisawa H.: Olivine-spinel solid solution equilibria. J. Geophys. Res. 73, 1467–1479 (1968).CrossRefGoogle Scholar
  2. Bakun-Gzubarov, N.: On equilibration conditions of the sudetic eclogites, Poland. I.M.A. Meeting: Collected Abstracts, W. Berlin: 1974, p. 190.Google Scholar
  3. Barth, T. F. W.: The measurements of paleotemperatures of granitic rocks. Ac. Sci. USSR, Moscow: Nauka, 1962.Google Scholar
  4. Buddington, A. F., Lindsley, D. H.: Iron-titanium oxide minerals and synthetic equivalents. J. Petrol. 5, 310–357, (1964).Google Scholar
  5. Burnham, C. W., Holloway, J. R., Davis, N. F.: Thermodynamic properties of water to 1000°C and 10000 bars. Geol. Soc. Am. Spec. Paper: 1969, p. 96.Google Scholar
  6. Chinner, G. A.: Almandine in thermal aureoles. J. Petrol., 3, 316–340, (1962).Google Scholar
  7. Delbove, F.: Équilibre d’échange d’ions entre feldspaths alcalins et halogénures sodi-potassiques fondus. Application an calcul des propriétés thermodynamiques de la série des feldspaths alcalins. Bull. Soc. Franc. Miner. Crist. 94, 456–466 (1971).Google Scholar
  8. Dobretsov, N. L.: Glaucophane Schist and Eclogite Glaucophane Schist Complexes of the USSR. Novosibirsk: Nauka, 1974, p. 429.Google Scholar
  9. Ernst, W. G.: Metamorphic zonations on presumably subducted lithospheric plates from Japan, California and the Alps. Contr. Mineral. Petrol., 34, 43–59 (1971).CrossRefGoogle Scholar
  10. Fedkin, V. V.: Staurolite. Moscow: Nauka, 1975, p. 270.Google Scholar
  11. Friedman, I. I.: A proposed method for the measurement of geologic temperatures. J. Geol. 57, N6 (1949).CrossRefGoogle Scholar
  12. Frost, M. Y.: Metamorphic grade and iron-magnesium distribution between coexisting garnet-biotite and garnet-hornblende. Geol. Mag., 99, 427–438 (1962).CrossRefGoogle Scholar
  13. Gibbs, G. V.: The polymorphism of cordierite. I. The crystal structure of low cordierite. Am. Mineral. 51, 1068–1087 (1966).Google Scholar
  14. Gordienko, V. V., Kutas, R. I.: Depth temperatures in some regions of the Ukraine. Acad. Nauk USSR. Doklady, Ser. B, 18, 702–705 (1970).Google Scholar
  15. Gordon, T. M., Greenwood, H. J.: The stability of grossularite in H2O-CO2 mixtures. Am. Mineral. 56, 1674–1688 (1971).Google Scholar
  16. Hewitt, D. A.: Stability of the assemblage muscovite-calcite-quartz. Am. Mineral. 58, 785–791 (1973a).Google Scholar
  17. Hewitt, D. A.: Metamorphism of micaceous limestones from south-central Connecticut. Am. J. Sci., 273A (Cooper volume), 444–468 (1973b).Google Scholar
  18. Hubregtse, J. J. M. W.: Distribution of Elements in Some Basic Granulite-Facies Rocks. Amsterdam-London: North-Holland, 1973.Google Scholar
  19. Iiyama, J. T.: Contribution a. l’etude des equilibres subsolidus du systeme ternaire orthose-albite-anorthite a l’aide reactions d’echanges d’ions Na-K au contact d’une solution hydrothermale. Bull. Soc. France Miner. Crist. 89, 442–454 (1966).Google Scholar
  20. Ivanov, I. P., Gurevich, L. P.: Experimental study of T-X CO2 boundaries of metamorphic zeolite facies. Contrib. Mineral. Petrol. 53, 55–60 (1975).CrossRefGoogle Scholar
  21. Karpov, I. K., Kiselev, A. I., Letnikov, F. A.: Chemical Thermodynamics in Petrology and Geochemistry. Irkutsk: 1971, p. 384.Google Scholar
  22. Korzhinskii, D. S.: Mobility and inertness of components in metasomatism. Akad. Nauk USSR. Izv., Ser. Geol. 1, 3–57 (1936).Google Scholar
  23. Korzhinskii, D. S.: Relation between mineral formation and depth. Vses. Mineral. Obsch. Zap. 66, 369–384 (1937).Google Scholar
  24. Korzhinskii, D. S.: The Factors in Mineral Equilibria and Abyssal Mineralogical Faciès. Moscow: Inst. Geol. Sc, 1940, p. 136.Google Scholar
  25. Korzhinskii, D. S.: Physico-Chemical Basis of the Analysis of Parageneses of Minerals. New York: Consultants Bureau, 1959.Google Scholar
  26. Kretz, R.: Chemical study of garnet, biotite and hornblende from gneisses of south-western Quebec with emphasis on distribution of elements in coexisting minerals. J. Geol. 67, 371–402 (1959).CrossRefGoogle Scholar
  27. Kretz, R.: Some applications of thermodynamics to coexisting minerals of variable compositions. Examples: orthopyroxene-clinopyroxene and ortho-pyroxene-garnet. J. Geol. 69, 361–387 (1961).CrossRefGoogle Scholar
  28. Kulish. E. A.: Quartzites in Archean Rocks of Southern Aldan Shield. Magadan: 1964, p. 112.Google Scholar
  29. Kuno, H.: Differentiation of basalt magmas. In: Basalts. Hess, H. H., Poldevaart, A. (eds.). New York: Wiley, 1968, pp. 623–689.Google Scholar
  30. Lundgren, L. W.: Muscovite reactions and partial melting in south-eastern Connecticut. J. Petrol. 7(3), 421–453 (1966).Google Scholar
  31. Matthews, D. W., Cheeney, R. F.: The metamorphic evolution of the Moin Nappe in Skye. Scottish J. Geol. 4(1), 20–30 (1968).CrossRefGoogle Scholar
  32. Marakushev, A. A.: The Problems of Mineral Facies in Metamorphic and Metasomatic Rocks. Moscow: Nauka, 1965, p. 312.Google Scholar
  33. Marakushev, A. A.: The Thermodynamics of Metamorphic Mineral Hydration. Moscow: Nauka, 1968, p. 199.Google Scholar
  34. Marakushev, A. A., Perchuk, L. L.: The thermodynamic model of the fluid regime of the Earth. In: Contributions to Physico-Chemical Petrology. Zhariov, V. A. (ed.), Moscow: Nauka, 1974, pp. 102–129.Google Scholar
  35. Melnik, Ju. P.: Thermodynamic properties of compressed gases and some peculiarities of metamorphic reactions involving water and carbon dioxide. Geokhimia 6, 654–662 (1972).Google Scholar
  36. Misch, P.: Stable association wollastonite-anortite, and other calc-silicate assemblages in amphibolite-facies crystalline schists of Nanga Parbat, north-west Himalayas. Beitr. Mineral. Petrogr. 10, 315–356 (1964).CrossRefGoogle Scholar
  37. Miyashiro, A.: Evolution of metamorphic belts. J. Petrol. 2, 277–311 (1961).Google Scholar
  38. Miyashiro, A.: Oxidation and reduction in the Earth’s crust with special reference to the role of graphite. Geochim. Cosmochim Acta 28, 717–732 (1964).CrossRefGoogle Scholar
  39. Mottana, A.: Distribution of elements among coexisting phases in amphibolebearing eclogites. Neues. Jahrb. Mineral Abhandl. 112, 161–187 (1970).Google Scholar
  40. Nagaitsev, Ju. V.: Petrology of Metamorphic from the Lake Ladoga and the White Sea Complexes. Leningrad: Univ. Press, 1974, p. 160.Google Scholar
  41. Newton, R. C.: An experimental determination of the high-pressure stability limits of magnesian cordierite under wet and dry condition. J. Geol. 80, 398–420 (1972).CrossRefGoogle Scholar
  42. Newton, R. C., Charlu, T. V., Kleppa, O. J.: A calorimetric investigation on the stability of anhydrous magnesium cordierite with application to granulite facies metamorphism. Contr. Miner. Petrol. 44, 295–313 (1974).CrossRefGoogle Scholar
  43. Perchuk, L. L.: The Physico-Chemical Petrology of Granitic and Alkaline Intrusions of Central Turkestan-Alay. Moscow: Nauka, 1964, p. 236.Google Scholar
  44. Perchuk, L. L.: Paragenesis of nepheline with alkali feldspar as a possible indicator of the thermodynamic conditions of mineral equilibrium. Akad. Nauk USSR, Dokl, 161, 932–935 (1965).Google Scholar
  45. Perchuk, L. L.: Temperature dependence of coefficient of calcium distribution between coexisting amphiboles and plagioclases. Akad. Nauk USSR, Dokl. 169, 1436–1438 (1966).Google Scholar
  46. Perchuk, L. L.: Biotite-garnet geothermometer. Akad. Nauk USSR, Dokl. 111, 411–414 (1967a).Google Scholar
  47. Perchuk, L. L.: The analysis of thermodynamic conditions of mineral equilibria in amphibole-garnet rocks. Akad. Nauk USSR, Izv., Ser. Geol. 3, 52–83 (1967b).Google Scholar
  48. Perchuk, L. L.: Biotite-garnet equilibrium in metamorphic rocks. In: Theoretical and Experimental Study of Mineral Equilibria. Nekrasov, I. Ya. (ed.), Moscow: Nauka, 1968a, pp. 3–36.Google Scholar
  49. Perchuk, L. L.: Pyroxene-garnet equilibrium and the depth facies of eclogites. Intern. Geol. Rev. 10, 280–318 (1968b).CrossRefGoogle Scholar
  50. Perchuk, L. L.: The effect of temperature and pressure on the equilibrium of natural iron-magnesium minerals. Intern. Geol. Rev. 11, 875–901 (1969a).CrossRefGoogle Scholar
  51. Perchuk, L. L.: The staurolite-garnet thermometer. Akad. Nauk USSR, Dokl. 186, 1405–1407 (1969b).Google Scholar
  52. Perchuk, L. L.: Paragenesis of rhombic pyroxene with garnet in metamorphic rocks. In: Contribution to Physico-Chemical Petrology. Zharikov, V. A. (ed.). Moscow: Nauka, 1969c, pp. 261–285.Google Scholar
  53. Perchuk, L. L.: Equilibria of Rock Forming Minerals. Moscow: Nauka, 1970a, p. 301.Google Scholar
  54. Perchuk, L. L.: Thermodynamic conditions of granitization of metapelitic rock masses. In: Contributions to Physico-Chemical Petrology. Zharikov, V. A. (ed.), Moscow: Nauka, 1970b, Vol. II, pp. 188–213.Google Scholar
  55. Perchuk, L. L.: Coexisting Minerals (Collection of Chemical Compositions and Paragenesis). Moscow: Nedra, 1971a, p. 424.Google Scholar
  56. Perchuk, L. L.: Crystallochemical problems in theory of phase relations. Geokhimiya 1, 23–38 (1971b).Google Scholar
  57. Perchuk, L. L.: Mineral equilibria and problems of thermo-and barometry. Vses. Min. Obsch. Zap. 100, 3–19 (1971c).Google Scholar
  58. Perchuk, L. L.: Thermodynamic regime of metamorphism, Akad. Nauk USSR, Isv., Ser. Geol., 12, 46–60 (1972).Google Scholar
  59. Perchuk, L. L.: Thermodynamic Regime of Depth Petrogenesis. Moscow: Nauka, 1973, p. 312.Google Scholar
  60. Perchuk, L. L.: Thermodynamic regime of metamorphism and granitization of terrigenic rock masses. Collected abstracts. I.M.A. Meeting. Ninth general meeting. Berlin: 1974, p. 106.Google Scholar
  61. Perchuk, L. L.: Gas-mineral equilibria, geophysical measurements and a proposed chemical model of the inner structure of the Earth. XYI General Assembly. Abstracts of papers presented at the interdisciplinary symposia. Grenoble: 1975.Google Scholar
  62. Perchuk, L. L.: Parageneses and Compositions of Coexisting Minerals. Moscow: Nauka, 1976, p. 205.Google Scholar
  63. Perchuk, L. L., Andrianova, Z. S.: Thermodynamics of equilibrium of alkali feldspar (K, Na)AlSi3O8 with aqueous solution (K, Na)Cl at 500–800°C and 2000–1000 bar pressure. In: Theoretical and Experimental Studies of Mineral Equilibria. Nekrasov, I. Ya. (ed.). Moscow: Nauka, 1968, p. 37–72.Google Scholar
  64. Perchuk, L. L., Fedkin, V. V.: The derivation of the PT-diagrams for equilibria of minerals of variable composition. In: Contributions to Physico-Chemical Petrology, Zharikov, V. A. (ed.). Moscow: Nauka, 1974, Vol. IV, pp. 162–175.Google Scholar
  65. Perchuk, L. L., Karpov, I. K.: Thermodynamic properties of carbon dioxide (CO2) at 100 < P < 10000 bar and 100 < t < 1000°C. In: Contributions to Physico-Chemical Petrology, Zharikov, V. A. (ed.). Moscow: Nauka, 1975, Vol. V, pp. 221–235.Google Scholar
  66. Perchuk, L. L., Pavlenko, A. S.: The temperature influence on distribution some isomorphic components between coexisting minerals from alkali rocks. Geochemistry 9, 1063–1082 (1967).Google Scholar
  67. Perchuk, L. L., Ryabchikov, I. D.: Mineral equilibria in the system nephelinealkali feldspar-plagioclase and their petrological significance. J. Petrol. 9, 123–167 (1968).Google Scholar
  68. Perchuk, L. L., Ryabchikov, I. D.: Phase correspondence in mineral systems (textbook for students). Moscow: Nedra, 1976, p. 287.Google Scholar
  69. Perchuk, L. L., Suvorova, V. A.: Thermodynamic calculation of CO and CO2 fugacities in the area of graphite-diamond phase transition. In: Phase Equilibria and the Processes of Mineral Formation, Ivanov, I. P. (ed.). Moscow: Nauka, 1973, Pt. 3, pp. 15–19.Google Scholar
  70. Perchuk, L. L., Ushakov, S. A.: Thermodynamic regime of metamorphism in the subducted lithospheric platforms. Vestnic, Ser. Geol. 6, 19–29 (1973).Google Scholar
  71. Perchuk, L. L., Vaganov, V. I.: Temperature regime of differentiation and crystallisation of basic and ultrabasic magmas. J. Petrol. (1976, in press).Google Scholar
  72. Ramberg, H.: The facies classification of rocks: a clue to the origin of quartzofeldspathic massifs and veins. J. Geol. 57, 17–31 (1949).Google Scholar
  73. Ramberg, H.: The Origin of Metamorphic and Metasomatic Rocks. Chicago: Univ. Chicago, 1952a, p. 317.Google Scholar
  74. Ramberg, H.: Chemical bonds and the distribution of cations in silicates. J. Geology 60, 331–355 (1952b).CrossRefGoogle Scholar
  75. Ramberg, H., DeVore, G.: The distribution of Fe++ and Mg++ in coexisting olivines and pyroxenes. J. Geol. 59, 193–210 (1951).CrossRefGoogle Scholar
  76. Robie, R. A., Waldbaum, D. R.: Thermodynamic Properties of Minerals and Related Substances at 298.15°K (25.0°C) and One Atmosphere (1.013 bars) Pressure and at Higher Temperatures. Washington: U.S. Govt. Print. Office, 1968, p. 256.Google Scholar
  77. Roedder, E.: Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts. Am. Miner. 50, 1746–1782 (1965).Google Scholar
  78. Roeder, P. L.: Activity of iron and olivine solubility in basaltic liquids. Earth Planet. Sci. Lett. 23, 397–410 (1974).CrossRefGoogle Scholar
  79. Saxena, S. K.: Thermodynamics of Rockforming Crystalline Solutions. Berlin-Heidelberg-New York: Springer, 1973.Google Scholar
  80. Schreyer, W., Yoder, H. S.: Cordierite-water system. Ann. Rep. Direct. Geop. Labor., Carnegie Inst. Washington, 58, 83–85 (1959).Google Scholar
  81. Sen, S. R., Chakraborty, K. R.: Magnesium-iron exchange equilibrium in garnet-biotite and metamorphic grade. N. Jb. Miner. Abh., 108, 181–207 (1968).Google Scholar
  82. Smith, D.: Stability of the assemblage iron-rich orthopyroxene-olivine-quartz. Am. J. Sci. 271, 370–382 (1971).CrossRefGoogle Scholar
  83. Shmonov, V. M., Shmulovich, K. I.: Molar volumes and equations of state for CO2 at 100–1000°C and 2 000–10000 bars. Akad. Nauk USSR, Dokl. 212, 935–938 (1974).Google Scholar
  84. Sobolev, V. S.: The petrography of Botogolsky alkaline massif. In: Botogolsky Graphite Deposit and Its Prospective Use. Irkutsk: 1947, p. 310.Google Scholar
  85. Sobolev, V. S.: The energy of crystalline lattice and iron distribution laws in minerals. Miner. Sbornik (Lvov), 2, 25–42 (1948).Google Scholar
  86. Thompson, J. B., Waldbaum, D. R.: Mixing properties of sanidine crystalline solutions: I. Calculations based on ionexchange data. Am. Miner. 53, 1965–1999, (1968).Google Scholar
  87. Thompson, J. B., Waldbaum, D. R.: Mixing properties of sanidine crystalline solutions: III. Calculations based on two phase data. Am. Miner. 54, 811–838, (1969).Google Scholar
  88. Ushakov, S. A.: Physics of the Earth. Structure and Development of the Earth. Moscow: Viniti, 1974, Vol. I, p. 296.Google Scholar
  89. Wagner, C.: Thermodynamics of Alloys. Cambridge, Mass: Addison-Welsley, 1952, p. 136Google Scholar
  90. Waldbaum, D. R., Thompson, J. B.: Mixing properties of crystalline solutions: II. Calculations based on volume data. Am. Miner. 53, 2000–2017, (1968).Google Scholar
  91. Waldbaum, D. R., Thompson, J. B.: Mixing properties of sanidine crystalline solutions: IV. Phase diagrams from equations of state. Am. Miner. 54, 1274–1298, (1969).Google Scholar
  92. Wones, D. R., Eugster, H. P.: Stability of biotite: experiment, theory and application. Am. Miner. 9, 1228–1272 (1965).Google Scholar
  93. Wood, B. J.: Fe2+-Mg2+ partition between coexisting cordierite and garnet. A discussion of the experimental data. Contr. Mineral. Petrol. 40, 253–258 (1973).CrossRefGoogle Scholar
  94. Wood, B. J., Strens, R. G. J.: The orthopyroxene geobarometer. Earth Planet. Sci. Lett. 77, 1–9 (1971).CrossRefGoogle Scholar
  95. Ziryanov, V. N., Perchuk, L. L., Podlesskii, K. V.: Nepheline-feldspar equilibrium. J. Petrol. (1976, in press).Google Scholar
  96. Zotov, I. A.: Temperature and pressure regime during metamorphism of the rocks from the crystalline complexes from south-westest Pamirs. Akad. Nauk USSR, Dokl. 777, 1170–1173 (1967).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • L. L. Perchuk

There are no affiliations available

Personalised recommendations