Zusammenfassung

Bei der Untersuchung von Geweben mit der Dünnschnittmethode muß der Präparation aus folgenden Gründen eine Fixation vorausgehen. Es können im Elektronenmikroskop unter Vakuum nur entwässerte Gewebe untersucht werden und es treten ferner nach der Entnahme von Gewebeproben postmortale Veränderungen durch Cytolyse auf, die durch Fixation unterbunden werden können. Gewebe mit hoher Durchblutung sind anfälliger als solche mit niedriger Stoffwechselleistung (z. B. Retina bzw. Plattenepithel).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu § 19

  1. Adams, C. W. M.: OsO4 and the Marchi method: reactions with polar and non-polar lipids, protein and polysaccharide. J. Histochem. Cytochem. 8, 262 (1960).CrossRefGoogle Scholar
  2. Afzelius, B. A.: Chemical fixatives for electr. micr.: In Interpretation of Ultrastructure. Ed. R. J. C. Harris, 1. New York 1962.Google Scholar
  3. Amelunxen, F., u. H. Themann: Zur Fixation mit Kaliumpermanganat. Mikroskopie 14, 276 (1960).Google Scholar
  4. Bahr, G. F.: OsO4 and ruthenium tetroxide and their reactions with biologically important substances. Exp. Cell Res. 7, 457 (1954).CrossRefGoogle Scholar
  5. Bahr, G. F.: The reactions of OsO4 in relation to electr. micr. Proc. Internat. Conf. London 144 (1954).Google Scholar
  6. Bahr, G. F.: Continued studies about the fixation with OsO4. Exp. Cell Res. 9, 277 (1955).CrossRefGoogle Scholar
  7. Bartl, P.: Freeze-substitution method using a water-miscible embedding medium. V. Internat. Congr. EM Philadelphia. Vol. II, P-4 (1962).Google Scholar
  8. Bennett, H. S., and J. H. Luft: s-collidine as a basis for buffering fixatives. J. biophys. biochem. Cytol 6, 113 (1959).CrossRefGoogle Scholar
  9. Bennett, H. S., and K. R. Porter: An electr. micr. study of sectioned breast muscle of the domestic fowl. Amer. J. Anat. 93, 61 (1953).CrossRefGoogle Scholar
  10. Bradbury, S., and G. A. Meek: The fine structure of the adipose cell of the leech Glossiphonia complanata. J. biophys. biochem. Cytol. 4, 603 (1958).CrossRefGoogle Scholar
  11. Bullivant S.: The staining of thin sections of mouse pancreas prepared by the Fernández-Moran helium II freeze-substitution method. J. biophys. biochem. Cytol. 8, 639 (1960).CrossRefGoogle Scholar
  12. Bullivant S.: Freeze substitution and supporting techniques. Symp. Quant. Electr. micr. Washington 1964, in Lab. Invest. 14, 1178 (1965).Google Scholar
  13. Bunge, R. P., M. B. Runge, and H. Ris: Electr. micr. study of demyelination in an exp. induced lesion in adult cat spinal cord. J. biophys. biochem. Cytol. 7, 685 (1960);CrossRefGoogle Scholar
  14. Bunge, R. P., M. B. Runge, and H. Ris: Electr. micr. study of demyelination in an exp. induced lesion in adult cat spinal cord. J. biophys. biochem. Cytol. 10, 67 (1961).CrossRefGoogle Scholar
  15. Caulfield, J. B.: Effects of varying the vehicle of OsO4 in tissue fixation. J. biophys. biochem. Cytol. 3, 827 (1957).CrossRefGoogle Scholar
  16. Claude, A.: Fixation of nuclear structures by unbuffered solutions of OsO4 in slightly acid destilled water. V. Internat. Congr. Em Philadelphia, Vol. II, L-14 (1962).Google Scholar
  17. Dalton, A. J.: A chrome-osmium fixative for electr. micr. Anat. Record 121, 281 (1955).Google Scholar
  18. David, H.: Zur Abh. postmortaler Kern- und Mitochondrienveränderungen von der Art des Einbettungsmittels (Methacrylat u. Polyester). Proc. Europ. Reg. Conf. EM Delft, Vol. II, 623 (1960).Google Scholar
  19. De Robertis, E.: Electr. micr. obs. on the submicr. morphology of the meiotic nucleus and chromosomes. J. biophys. biochem. Cytol. 2, 785 (1956).CrossRefGoogle Scholar
  20. Elbers, P. F., and P. H. J. T. Ververgaert: Electr. micr. and x-ray diffr. studies on a homologous series of saturated phosphatidylcholines. J. cell. Biol. 25, 375 (1965).CrossRefGoogle Scholar
  21. Ehrlich, H. G.: Electr. micr. studies of Saintpaulia ionantha wendl. pollen walls. Exp. Cell Res. 15, 463 (1958).CrossRefGoogle Scholar
  22. Elfvin, L. G.: The ultrastructure of the plasma membrane and myelin sheath of peripheral nerve fibers after fixation by freeze-drying. J. Ultrastruct. Res. 8, 283 (1963).CrossRefGoogle Scholar
  23. Farrant, J. L., and A. J. Hodge: The ferritin crystal lattice in ultrathin sections. Proc. Internat. Congr. EM London, 118 (1954).Google Scholar
  24. Feder, N., and R. L. Sidman: Methods and principles of fixation by freeze-substitution. J. biophys. biochem. Cytol. 4, 593 (1958).CrossRefGoogle Scholar
  25. Fernández-Morán, H.: The submicr. organisation of vertebrate nerve fibres. Exp. Cell Res. 3, 282 (1952).CrossRefGoogle Scholar
  26. Fernández-Morán, H.: Low temperature prep. techn. for electr. micr. of biol. specimens based on rapid freezing with liquid helium II. Ann. N. Y. Acad. Sci. 85, 689 (1960).ADSCrossRefGoogle Scholar
  27. Fernández-Morán, H.: The fine structure of vertebrate and invertebrate photoreceptors as revealed by low temp. electr. micr. The structure of the eye. 521 (ed. G. K. Smelser). New York: 1961.Google Scholar
  28. Fernández-Morán, H., and J. B. Finean: Electr. micr. and low-angle x-ray diffr. studies of the nerve myelin sheath. J. biophys. biochem. Cytol. 3, 725 (1957).CrossRefGoogle Scholar
  29. Finean, J. B.: The effects of OsO4-fixation on the structure of myelin in sciatic nerve. Exp. Cell Res. 6, 283 (1954).CrossRefGoogle Scholar
  30. Finean, J. B.: The effects of freeze-drying on the molecular organisation in nerve myelin. Exp. Cell Res. 9, 181 (1955).CrossRefGoogle Scholar
  31. Finean, J. B., F. S. Sjöstrand, and E. Steinmann: Submicr. organisation of some layered lipoprotein structures. Exp. Cell Res. 5, 557 (1953).CrossRefGoogle Scholar
  32. Geren, B. B., and F. O. Schmitt: Proc. Natl. Acad. Sci. 40, 863 (1954).ADSCrossRefGoogle Scholar
  33. Glick, D., and B. G. Malmstrom: Simple and efficient freezing-drying apparatus for the prep. of embedded tissues. Exp. Cell Res. 3, 125 (1952).CrossRefGoogle Scholar
  34. Grunbaum, B. W., and S. R. Wellings: Freeze-drying apparatus for preservation of ultrastructure. J. Ultrastructure Res. 4, 117 (1960).CrossRefGoogle Scholar
  35. Haggis, G. H.: Electr. micr. replicas from the surface of a fracture through frozen cells. J. biophys. biochem. Cytol. 9, 841 (1961).CrossRefGoogle Scholar
  36. Hake, T.: Studies on the reactions of OsO4 and KMnO4 with amino acids, peptides and proteins. Symp. Quant. Electr. micr. Washington 1964. In: Lab. Invest. 14, 1208 (1965).Google Scholar
  37. Hanzon, V., and L. H. Hermodsson: Freeze-drying of tissues for light and electr. micr. J. Ultrastructure Res. 4, 332 (1960).CrossRefGoogle Scholar
  38. Harreveld, A. Van, and J. Crowell: Electr. micr. after rapid freezing On a metal surface and substituion fixation. Anat. Record 149, 381 (1964).CrossRefGoogle Scholar
  39. Hayes, T. L., F. T. Lindgren, and J. W. Gofman: A quant. determination of the OsO4-lipoprotein interaction. J. Cell Biol. 19, 251 (1963).CrossRefGoogle Scholar
  40. Helander, H. F.: Ultrastructure of fundus glands of the mouse gastric mucosa. J. Ultrastructure Res. (Suppl.) 4, 1 (1962).Google Scholar
  41. Hess, A., and A. I. Lansing: The fine structure of peripheral nerve fibers. Anat. Rec. 117, 175 (1953).CrossRefGoogle Scholar
  42. Holt, S. J., and R. M. Hicks: Studies on formalin fixation for electr. micr. and cytochemical staining purposes. J. biophys. biochem. Cytol. 11, 31 (1961).CrossRefGoogle Scholar
  43. Ito, S.: Post-mortem changes of the plasma membrane. V. Internat. Congr. Em Philadelphia, Vol. II, L-5 (1962).Google Scholar
  44. Karlsson, U., and R. L. Schultz: Fixation of the central nervous system for electr. micr. by aldehyde perfusion. J. Ultrastructure Res. 12, 160, 187 (1965).CrossRefGoogle Scholar
  45. Karnovsky, M. J.: A formaldehyde-glutaraldehyde fixation of high osmolality for use in electr. micr. J. Cell. Biol. 27, 137A (1965).Google Scholar
  46. Karrer, H. E.: The ultrastructure of mouse lung. J. biophys. biochem. Cytol. 2, 241 (1956).CrossRefGoogle Scholar
  47. Leyon, H.: The structure of chloroplasts. Exp. Cell Res. 6, 497 (1954);CrossRefGoogle Scholar
  48. Leyon, H.: The structure of chloroplasts. 7, 265 (1954).CrossRefGoogle Scholar
  49. Lovelock, J. E., and M. W. H. Bishop: Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature (Lond.) 183, 1394 (1959).ADSCrossRefGoogle Scholar
  50. Low, F. N.: The electr. micr. of sectioned lung tissue after varied duration of fixation in buffered OsO4. Anat. Rec. 120, 827 (1954).CrossRefGoogle Scholar
  51. Luft, J. H.: Permanganate — a new fixative for electr. micr. J. biophys. biochem. Cytol. 2, 799 (1956).CrossRefGoogle Scholar
  52. Marinozzi, V.: The role of fixation in electron staining. J. Roy. Micr. Soc. 81, 141 (1963).CrossRefGoogle Scholar
  53. Merriam, R. W.: The contribution of lower oxides of osmium to the density of biol. specimens in electr. micr. J. biophys. biochem. Cytol. 4, 579 (1958).CrossRefGoogle Scholar
  54. Millonig, G.: Further obs. on a phosphate buffer for osmium solutions in fixation. V. Internat. Congr. Em Philadelphia, Vol. II, P-8 (1962).Google Scholar
  55. Mollenhauer, H. H.: Permanganate fixation of plant cells. J. biophys. biochem. Cytol. 6, 431 (1959).CrossRefGoogle Scholar
  56. Moor, H.: Die Gefrier-Fixation lebender Zellen und ihre Anwendung in der Elektr. mikr. Z. Zellforsch. 62, 546 (1964).CrossRefGoogle Scholar
  57. Moor, H.: Die Gefrierätzung, Balzers Hochvakuumfachbericht 2 (1965).Google Scholar
  58. Moor, H., and K. Mühlethaler: Fine structure in frozen-etched yeast cells. J. Cell Biol. 17, 609 (1963).CrossRefGoogle Scholar
  59. Moor, H., and K. Mühlethaler, H. Waldner, and A. Frey-Wyssling: A new freezing ultramicrotome. J. biophys. biochem. Cytol. 10, 1 (1961).CrossRefGoogle Scholar
  60. Moor, H., C. Ruska u. H. Ruska: Elektr. mikr. Darstellung tierischer Zellen mit der Gefrierätztechnik. Z. Zellforsch. 62, 581 (1964).CrossRefGoogle Scholar
  61. Morgan, C., D. H. Moore, and H. M. Rose: Some effects of the microtome knife and electr. beam on methacrylate-embedded thin sections. J. biophys biochem. Cytol. 2 (Suppl.), 21 (1956).CrossRefGoogle Scholar
  62. Müller, H. R.: Gefriertrocknung als Fixationsmethode an Pflanzenzellen. J. Ultrastructure Res. 1, 109 (1957).CrossRefGoogle Scholar
  63. Osinchak, J.: Electr. micr. localization of acid phosphatase and thiamine pyrophosphatase activity in hypothalamic neurosecretory cells of the rat. J. Cell Biol. 21, 35 (1964).CrossRefGoogle Scholar
  64. Palade, G. E.: A study of fixation for electr. micr. J. exp. Med. 95, 285 (1952 a).CrossRefGoogle Scholar
  65. Palade, G. E.: The fine structure of mitochondria. Anat. Rec. 114, 427 (1952b).CrossRefGoogle Scholar
  66. Palade, G. E.: The fixation of tissues for electr. micr. Proc. Internat. Congr. EM London, 129 (1954).Google Scholar
  67. Palay, S. L., S. M. Mcgee-Russell, S. Gordon, and M. A. Grillo: Fixation of neural tissues for electr. micr. by perfusion with solutions of OsO4. J. Cell Biol. 12, 385 (1962).CrossRefGoogle Scholar
  68. Palay, S. L., and G. E. Palade: The fine structure of neurons. J. biophys. biochem. Cytol. 1, 69 (1955).CrossRefGoogle Scholar
  69. Pallie, W., and D. C. Pease: Prefixation use of hyaluronidase to improve in situ preservation for electr. micr. J. Ultrastructure Res. 2, 1 (1958).CrossRefGoogle Scholar
  70. Pease, D. C.: Buffered formaldehyde as a killing agent and primary fixative for electr. micr. Anat. Rec. 142, 342 (1962).Google Scholar
  71. Pease, D. C.: Histological techn. for electr. micr. New York: 1964.Google Scholar
  72. Porter, K. R., and F. Kallman: The properties and effects of OsO4 as a tissue fixative with special reference to its use for electr. micr. Exp. Cell. Res. 4, 127 (1953).CrossRefGoogle Scholar
  73. Porter, K. R., and R. D. Machado: Studies on the endoplasmatic reticulum. J. biophys. biochem. Cytol. 7, 167 (1960).CrossRefGoogle Scholar
  74. Rebhun, L. I.: Appl. of freeze-substitution to electr. micr. studies of invertebrate oocytes. J. biophys. biochem. Cytol. 9, 785 (1961).CrossRefGoogle Scholar
  75. Rebhun, L. I., and H. T. Gagné: Some aspects of freeze-substitution in electr. micr. V. Internat. Congr. EM Philadelphia, Vol. II, L-2 (1962).Google Scholar
  76. Rhodin, J.: Correlation of ultrastructural organisation and function in normal and exp. changed proximal convoluted tubule cells of the mouse kidney. Stockholm: 1954.Google Scholar
  77. Robertson, J. D.: Structural alterations in nerve fibers produced by hypotonic and hypertonic solutions. J. biophys. biochem. Cytol. 4, 349 (1958).CrossRefGoogle Scholar
  78. Roth, L. E., R. A. Jenkins, C. W. Johnson, and R. W. Robinson: Additional stabilizing conditions for electr. micr. of the mitotic apparatus of giant amebae. J. Cell Biol. 19, 62A (1963).Google Scholar
  79. Rowley, J. R., K. Mühlethaler, and A. Frey-Wyssling: A route for the transfer of materials through the pollen grain wall. J. biophys. biochem. Cytol. 6, 537 (1959).CrossRefGoogle Scholar
  80. Sabatini, D. D., K. G. Bensch, and R. J. Barrnett: New means of fixation for electr. micr. and histochem. Anat. Rec. 142, 274 (1962).Google Scholar
  81. Sabatini, D. D., K. G. Bensch, and R. J. Barrnett: New fixatives for cytological and cytochemical studies. V. Internat. Congr. EM Philadelphia, Vol. II, L-3 (1962).Google Scholar
  82. Sabatini, D. D., K. G. Bensch, and R. J. Barrnett: Cytochemistry and electr. micr. J. Cell Biol. 17, 19 (1963).CrossRefGoogle Scholar
  83. Sabatini, D. D., F. Miller, and R. J. Barrnett: Aldehyde fixation for morphological and enzyme histochemical studies with the electr. micr. J. Histochem. Cytochem. 12, 57 (1964).CrossRefGoogle Scholar
  84. Sager, R., and G. E. Palade: Chloroplast structure in green and yellow strains of Chlamydomonas. Exp. Cell Res. 7, 584 (1954).CrossRefGoogle Scholar
  85. Sandborn, E.: Glutaraldehyd-acrolein and osmium-fixation of fine structure. J. appl. Phys. 35, 3099 (1964).Google Scholar
  86. Schidlovsky, G.: Contrast in multilayer systems after various fixations. Symp. Quant. EM Washington 1964. In: Lab. Invest. 14, 1213 (1965).Google Scholar
  87. Schmitt, F. O., and B.B. Geren: The fibrous structure of the nerve axon in relation to the localization of “neurotubules”. J. exp. Med. 91, 499 (1950).CrossRefGoogle Scholar
  88. Sjöstrand, F. S.: The lamellated structure of the nerve myelin sheath as revealed by high resolution electr. micr. Experientia (Basel) 9, 68 (1953).ADSCrossRefGoogle Scholar
  89. Sjöstrand, F. S., and R. F. Baker: Fixation by freeze-drying for electr. micr. of tissue cells. J. Ultrastructure Res. 1, 239 (1958).CrossRefGoogle Scholar
  90. Sjöstrand, F. S., and L. G. Elfvin: The layered, asymmetric structure of the plasma membrane in the exocrine pancreas cells of the cat. J. Ultrastructure Res. 7, 504 (1962).CrossRefGoogle Scholar
  91. Steere, R. L.: Electr. micr. of structural detail in frozen biol. specimens. J. biophys. biochem. Cytol. 3, 45 (1957).CrossRefGoogle Scholar
  92. Steinmann, E.: An electr. micr. study of the lamellar structure of chloroplasts. Exp. Cell Res. 3, 367 (1952).CrossRefGoogle Scholar
  93. Stephenson, J. L.: Ice crystal growth during the rapid freezing of tissues. J. biophys. biochem. Cytol. 2 (Suppl.), 45 (1956).CrossRefGoogle Scholar
  94. Stoeckenius, W.: OsO4 fixation of lipids. Proc. Europ. Reg. Conf. Em Delft, Vol. II, 716 (1960).Google Scholar
  95. Stoeckenius, W., and S. C. Mahr: Studies on the reaction of OsO4 with lipids and related compounds. Symp. Quant. EM Washington 1964. In: Lab. Invest. 14, 1196 (1965).Google Scholar
  96. Tahmisian, T. N.: Use of the freezing point depression method to adjust the tonicity of fixing solutions. J. Cell Biol. 19, 69A (1963);Google Scholar
  97. Tahmisian, T. N.: Use of the freezing point depression method to adjust the tonicity of fixing solutions. J. Ultrastructure Res. 10, 182 (1964).CrossRefGoogle Scholar
  98. Themann, H.: Negativdarstellung von zellulären Membransystemen im Elektr. mikr. Naturwissenschaften 51, 535 (1964).ADSCrossRefGoogle Scholar
  99. Thornburg, W., and E. De Robertis: Polarization and electr. micr. study of frog nerve axoplasm. J. biophys. biochem. Cytol 2, 475 (1956).CrossRefGoogle Scholar
  100. Tooze, J.: Measurement of some cellular changes during the fixation of amphibian erythrocytes with OsO4 solutions. J. Cell. Biol. 22, 551 (1964).CrossRefGoogle Scholar
  101. Trump, B. F., and J. L. E. Ericsson: The effect of the fixative solution on the ultrastructure of cells and tissues, Symp. Quant. EM Washington 1964, in Lab. Invest. 14, 1245 (1965).Google Scholar
  102. Trump, B. F., P. J. Goldblatt, and R. E. Stowell: An electr. micr. study of early cytoplasmatic alterations in hepatic parenchymal cells of mouse liver during necrosis in vitro (autolysis). Lab. Invest. 11, 986 (1962).Google Scholar
  103. Trurnit, H. J., and G. Schidlovsky: Thin cross-sections of artificial stacks of monomolecular films. Proc. Europ. Reg. Conf. EM Delft, Vol. II, 721 (1960).Google Scholar
  104. Whaley, W. G., H. H. Mollenhauer, and J. E. Kephart: The endoplasmatic reticulum and the Golgi structure in maize root cells. J. biophys. biochem. Cytol. 5, 501 (1959).CrossRefGoogle Scholar
  105. Wetzel, B. K.: Sodium permanganate fixation for electr. micr. J. biophys. biochem. Cytol. 9, 711 (1961).CrossRefGoogle Scholar
  106. Wohlfarth-Bottermann, K. E.: Die Kontrastierung tierischer Zellen u. Gewebe im Rahmen ihrer elektr. mikr. Unters. an ultradünnen Schnitten. Naturwissenschaften 44, 287 (1957).ADSCrossRefGoogle Scholar
  107. Wood, R. L., and J. H. Luft: The influence of buffer systems on fixation with OsO4. J. Ultrastructure Res. 12, 22 (1965).CrossRefGoogle Scholar
  108. Zetterqvist, H. A.: The ultrastructural organisation of the columnar absorbing cells of the mouse jejunum. Stockholm 1956.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Universität Münster i. W.Deutschland

Personalised recommendations