Advertisement

Some Recent Advances in Numerical Methods in Structural Dynamics

  • K. K. Gupta
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

The purpose of this paper is to present some recent developments in the area of numerical dynamic analysis of large structural systems. The first part of the paper is devoted to the finite dynamic element method, a new concept in the discretization of a continuum, the adoption of which effects considerable reduction in the number of degrees of freedom for a required solution accuracy, when compared with the usual finite element method. This is followed by a brief description of eigenproblem solution techniques, for the free vibration analysis of both rotating and nonrotating structures, that fully exploit the associated matrix sparsity. Together, these techniques constitute a powerful tool for the free vibration and subsequent dynamic response analysis of complex practical structures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Przemieniecki, J. S. : Theory of Matrix Structural Analysis. New York: McGraw-Hill 1968, 273–277, 281–287, 336–339.MATHGoogle Scholar
  2. 2.
    Gupta, K.K. : Solution of Quadratic Matrix Equations for Free Vibration Analysis of Structures. Int. J. Num. Meth. Engng 6 (1973) 129–135.MATHCrossRefGoogle Scholar
  3. 3.
    Gupta, K. K. : On a Finite Dynamic Element Method for Free Vibration Analysis of Structures. Comp. Meth. Appl. Mech. Engng 9 (1976) 105–120.MATHCrossRefGoogle Scholar
  4. 4.
    Gupta, K. K. : Development of a Finite Dynamic Element for Free Vibration Analysis of Two-Dimensional Structures. Int. J. Num. Meth. Engng (in press).Google Scholar
  5. 5.
    Bogen, R. A.; et al. : MACSYMA Reference Manual. Project MAC, MIT 1976.Google Scholar
  6. 6.
    Gupta, K. K. : Recent Advances in Numerical Analysis of Structural Eigenvalue Problems. Proc. 1973 Tokyo Seminar on Finite Element Analysis (1973) 249–271.Google Scholar
  7. 7.
    Gupta, K.K. : Eigenproblem Solution by a Combined Sturm Sequence and Inverse Iteration Technique. Int. J. Num. Meth. Engng 7 (1973) 17–42.CrossRefGoogle Scholar
  8. 8.
    Gupta, K.K. : Free Vibration Analysis of Spinning Structural Systems. Int. J. Num. Meth. Engng 5 (1973) 395–418.CrossRefGoogle Scholar
  9. 9.
    Gupta, K.K. : On a Combined Sturm Sequence and Inverse Iteration Technique for Eigenproblem Solution of Spinning Structures. Int. J. Num. Meth. Engng 7 (1973) 509–518.MATHCrossRefGoogle Scholar
  10. 10.
    Gupta, K. K. : Eigenproblem Solution of Damped Structural Systems. Int. J. Num. Meth. Engng 8 (1974) 877–911.MATHCrossRefGoogle Scholar
  11. 11.
    Gupta, K. K. : Free Vibration Analysis of Spinning Flexible Space Structures. J. Astronaut. Sci. 24 (1976) 273–280.Google Scholar
  12. 12.
    Gupta, K. K. : Numerical Analysis of Free Vibrations of Damped Rotating Structures. Proc. Conf. on Vibrations in Rotating Machinery, University of Cambridge, UK (1976).Google Scholar
  13. 13.
    Gupta, K. K. : Numerical Solution of Quadratic Matrix Equations for Free Vibration Analysis of Structures. Proc. Conf. on Computational Aspects of the Finite Element Method, Imperial College, London, UK (1975).Google Scholar
  14. 14.
    Wilkinson, J. H. : The Algebraic Eigenvalue Problem. Oxford: Clarendon Press 1965.MATHGoogle Scholar

Copyright information

© Springer-Verlag, Berlin/Heidelberg 1978

Authors and Affiliations

  • K. K. Gupta
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations