Skip to main content

Hopf Bifurcation for an Infinite Delay Functional Equation

  • Conference paper
Dynamics of Infinite Dimensional Systems

Part of the book series: NATO ASI Series ((NATO ASI F,volume 37))

  • 457 Accesses

Abstract

In this lecture we discusse a Hopf bifurcation problem for the functional equation

$$ x(t) = F(\alpha ,x_t ),t \in R. $$
(1.1)

Here x is a vector in R n, the parameter α is an element of a finite dimensional real Banach space A, and F is a mapping from Α × BUC(R;R n) into R n. Moreover, F(α, 0) = 0, so x ≡ 0 is a solution of (1.1). In addition we suppose that the linearization of (1.1) has a one-parameter family of nontrivial periodic solutions at a critical value α 0 of the parameter. Our aim is to show that also the nonlinear equation has a oneparameter family of nontrivial periodic solutions for some values of α close to α 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Chafee, A bifurcation problem for a functional differential equation of finitely retarded type, J. Math. Anal. Appl. 35 (1971), 312–348.

    Article  MathSciNet  MATH  Google Scholar 

  2. S-N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, Berlin and New York, 1982.

    Google Scholar 

  3. J. R. Claeyssen, Effect of delays on functional differential equations, J. Differential Equations 20 (1976), 404–440.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. R. Claeyssen, The integral-averaging bifurcation method and the general one-delay equation, J. Math. Anal. Appl. 78 (1980), 429–439.

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Diekmann and S. A. van Gils, Invariant manifolds for Volterra integral equations of convolution type, J. Differential Equations 54 (1984), 139–180.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. R. Goldberg, Fourier Transforms, Cambridge University Press, London, 1970.

    Google Scholar 

  7. G. Gripenberg, Periodic solutions of an epidemic model, J. Math. Biology 10 (1980), 271–280.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Gripenberg, On some epidemic models, Quart. Appl. Math. 39 (1981), 317327.

    Google Scholar 

  9. G. Gripenberg, Stability of periodic solutions of some integral equations, J. reine angew. Math. 331 (1982), 16–31.

    MathSciNet  MATH  Google Scholar 

  10. J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, Berlin and New York, 1975.

    Google Scholar 

  11. J. K. Hale, Nonlinear oscillations in equations with delays, in Nonlinear Oscillations in Biology, Lectures in Applied Mathematics, Vol. 17., 157–189, American Mathematical Society, Providence, 1978.

    Google Scholar 

  12. J. K. Hale and J. C. F. de Oliveira, Hopf bifurcation for functional equations, J. Math. Anal. Appl. 74 (1980), 41–58.

    Google Scholar 

  13. G. S. Jordan, O. J. Staffans and R. L. Wheeler, Local analyticity in weighted L1-spaces and applications to stability problems for Volterra equations, Trans. Amer. Math. Soc. 274 (1982), 749–782.

    MathSciNet  MATH  Google Scholar 

  14. G. S. Jordan, O. J. Staffans and R. L. Wheeler, Convolution operators in a fading memory space: The critical case, SIAM J. Math. Analysis, to appear.

    Google Scholar 

  15. G. S. Jordan, O. J. Staffans and R. L. Wheeler, Subspaces of stable and unstable solutions of a functional differential equation in a fanding memory space: The critical case, to appear.

    Google Scholar 

  16. J. C. F. de Oliveira, Hopf bifurcation for functional differential equations, Nonlinear Anal. 4 (1980), 217–229.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. C. F. de Oliveira and J. K. Hale, Dynamic behavior from bifurcation equations, Tôhoku Math. J. 32 (1980), 577–592.

    MATH  Google Scholar 

  18. O. J. Staffans, On a neutral functional differential equation in a fading memory space, J. Differential Equations 50 (1983), 183–217.

    Article  MathSciNet  MATH  Google Scholar 

  19. O. J. Staffans, Hopf bifurcation of functional and functional differential equations with infinite delay, to appear.

    Google Scholar 

  20. H. W. Stech, Hopf bifurcation calculations for functional differential equations, J. Math. Anal. Appl. 109 (1985), 472–491.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. W. Stech, Nongeneric Hopf bifurcations in functional differential equations, SIAM J. Math. Anal. 16 (1985), 1134–1151.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Staffans, O.J. (1987). Hopf Bifurcation for an Infinite Delay Functional Equation. In: Chow, SN., Hale, J.K. (eds) Dynamics of Infinite Dimensional Systems. NATO ASI Series, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86458-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86458-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86460-5

  • Online ISBN: 978-3-642-86458-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics