Skip to main content

Longtime Behavior for a Class of Abstract Integrodifferential Equations

  • Conference paper
  • 458 Accesses

Part of the book series: NATO ASI Series ((NATO ASI F,volume 37))

Abstract

We are concerned with semilinear integrodifferential equations of the form,

$$ \dot x\left( \psi \right)\left( {\text{t}} \right) = {\text{AX}}\left( \psi \right)\left( {\text{t}} \right) + \int_{ - \infty }^{\text{t}} {{\text{g}}\left( {{\text{t,s,x}}\left( \psi \right)\left( {\text{s}} \right)} \right){\text{ds}}} $$
(1.a)
$$ {\text{x}}\left( \psi \right)\left( \theta \right) = \psi \left( \theta \right)\quad \theta \in \left( { - \infty ,0} \right] $$
(1.b)
$$ \psi \in {\text{C}}_\alpha \quad {\text{For some }}\alpha \in \left( {0,1} \right) $$
(1.c)

Here A is required to be the infinitesional generator of an analytic semi-group {T(t)|t ≥ 0} acting on a Banach space \( \{ T(t)|t \geq 0\} \). We further stipulate that O ∈ ρ(A). For α∈(0, 1), Aα denotes the fractional power of the operator A and \( \underline {\bar X} _\alpha \) represents the interpolation space defined by the α power of A, i.e.

$$ \underline {\bar X} _\alpha = \{ x|x \in D(A\alpha )\} $$

with

$$ \left\| {\text{x}} \right\|_\alpha = \left\| {{\text{A}}^\alpha {\text{x}}} \right\|. $$

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brewer, D.W., “A nonlinear semigroup for a functional differential equation,” Trans. Amer. Math. Soc. 236(1978), 173–191.

    Article  MathSciNet  MATH  Google Scholar 

  2. Brewer, D.W., “The asymptotic stability of a nonlinear functional differential equation of infinite delay,” Hou. J. Math. 6(1980), 321–330.

    MathSciNet  Google Scholar 

  3. Coleman, B.D. and V.J. Mizel, “On the stability of solutions of functional differential equation,” Arch. Rat. Mech. Anal. 30 (1968), 173–196.

    MathSciNet  Google Scholar 

  4. Dyson and R. Villella-Bressan, “Functional differential equations and nonlinear evolution operators,” Proc. Royal. Soci., Edinburgh 75A (1975–1976).

    Google Scholar 

  5. Dyson and R. Villella-Bressan, “Nonlinear functional differential equations in L1 spaces,” Nonlinear Analysis TMA 1 (1977), 383–395.

    MathSciNet  MATH  Google Scholar 

  6. Dyson and R. Villella-Bressan, “Semigroups of translations associated with functional and functional differential equations,” Proc. Royal Soc., Edinburgh 82A (1979), 171–188.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fitzgibbon, W.E., “Asymptotic, behavior of solutions to a class of integrodifferential equations,” J. Math. Anal. Appl. (to appear).

    Google Scholar 

  8. Fitzgibbon, W.E., “Convergence theorems for semilinear Volterra Equations with infinite delay,” J. Integral Equations 8 (1985), 264–272.

    MathSciNet  Google Scholar 

  9. Fitzgibbon, W.E., “Nonlinear Volterra equations with infinite delay,” Monat. für Math. 84 (1977), 275–288.

    Article  MathSciNet  MATH  Google Scholar 

  10. Fitzgibbon, W.E., “Semilinear functional differential equations in Banach space,” J. Differential Equations 29 (1979), 1–14.

    Article  MathSciNet  Google Scholar 

  11. Fitzgibbon, W.E., “Stability for abstract nonlinear Volterra equations involving finite delay,” J. Math. Anal. 60 (1977), 429–434.

    Article  MathSciNet  Google Scholar 

  12. Friedman, A., Partial Differential Equations, Holt, Rhinehart and Winston, New York, 1969.

    Google Scholar 

  13. Hale, J., Functional Differential Equations, Vol. 3, Appl, Math. Series.

    Google Scholar 

  14. Hale, J., “Functional differential equations with infinite delays,” J. Math. Anal. 48 (1974), 276–283.

    Article  MathSciNet  MATH  Google Scholar 

  15. Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math 840, Springer-Verlag, New York, 1981.

    Google Scholar 

  16. Kappel, F. and W. Schappacher, “Some contributions to the theory of infinite delay equations,” J. Differential Equations 36(1980), 71–91.

    MathSciNet  Google Scholar 

  17. Kartsatos, A.G. and M.E. Parrott, “A simplified approach to existence and stablility of a functional evolution equation in a general Banach space,” Infinite Dimensional Systems, (ed. F. Kappel and W. Schappacher), Lecture Notes in Mathematics, 1076, Springer-Verlag, Berlin, 1984, 115–121.

    Google Scholar 

  18. Kartsatos, A.G. and M.E. Parrott, “Convergence of Kato approximations for nonlinear evolution equations involving functional perturbations,” J. Differential Equations 37 (1983), 358–377.

    Article  MathSciNet  Google Scholar 

  19. Kunish, K., “A semigroup approach to partial differential equations with delay,” Abstract Cauchy Problems and Functional Differential Equations (F. Kappel and W. Schappacher Ed.) Pittman Press, Research Notes in Mathematics 48, London, 53–70.

    Google Scholar 

  20. Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Vol. 44, Appl. Math. Series, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  21. Plant, A., “Stability of functional differential equations using weighted norms,” Report 70, Fluid Mechanics Research Institute, University of Essex, 1976.

    Google Scholar 

  22. Rankin, S.M., “Existence and asymptotic behavior of a functional differential equation in Banach space,” J. Math. Anal. Appl. 88 (1982), 531–542.

    Article  MathSciNet  MATH  Google Scholar 

  23. Redlinger, R., “On the asymptotic behavior of a semilinear functional equation in Banach space,” J. Math. Anal. Appl., (to appear).

    Google Scholar 

  24. Travis, C.C. and G.F. Webb, “Existence and stability for partial functional differential equations,” Trans. Amer. Math. Soc. 200 (1974) 531–542.

    Article  MathSciNet  Google Scholar 

  25. Travis, C.C. and G.F. Webb, “Partial differential equations with deviating arguments in the time variable, J. Math. Anal. Appl. 56 (1976), 397–409.

    MathSciNet  MATH  Google Scholar 

  26. Travis, C.C. and G.F. Webb, “Existence stability and compactness in a a-norm for partial functional differential equations,” Trans. Amer. Math. Soc. 240 (1978), 129–143.

    MathSciNet  MATH  Google Scholar 

  27. Villella-Bressan, R., “Flow invariant sets for functional differential equations,” Abstract Cauchy Problems and Functional Differential Equations (F. Kappel and W. Schuppacher, Ed.), Pittman Press, Research Notes in Mathematics 48, London 213–229.

    Google Scholar 

  28. Walter, W.A., Differential and Integral Inequalities, Springer-Verlag, New York, 1970.

    MATH  Google Scholar 

  29. Webb, G.F., “Asymptotic stability for abstract nonlinear functional differential equations,” Proc Amer. Math. Soc. 54(1976), 225–230.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fitzgibbon, W.E. (1987). Longtime Behavior for a Class of Abstract Integrodifferential Equations. In: Chow, SN., Hale, J.K. (eds) Dynamics of Infinite Dimensional Systems. NATO ASI Series, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86458-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86458-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86460-5

  • Online ISBN: 978-3-642-86458-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics