Structures of Multivariable Processes

  • Rolf Isermann


Part E considers some design methods for linear discrete-time multivariable processes. As shown in Figure 18.1 the inputs u i and outputs yj of multivariable processes influence each other, resulting in mutual interactions of the direct signal paths U 1y 1 , u 2y 2, etc. The internal structure of multivariable processes has a significant effect on the design of multivariable control systems. This structure can be obtained by theoretical modelling if there is sufficient knowledge of the process. The structures of technical processes are very different such that they cannot be described in terms of only a few standardized structures. However, the real structure can often be transformed into a canonical model structure using similarity transformations or simply block diagram conversion rules. The following sections consider special structures of multivariable processes based on the transfer function representation, matrix polynomial representation and state representation. These structures are the basis for the designs of multivariable controllers presented in the following chapters.


Steam Generator Coupling Element Canonical Structure Minimal Realization Sign Combination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 18.1
    Mesarovic, M.D.: The control of multivariable systems. New York: Wiley 1960Google Scholar
  2. 18.2
    Schwarz, H.: Mehrfachregelungen. 1. Bd. Berlin: Springer-Verlag 1967zbMATHGoogle Scholar
  3. 18.3
    Schwarz, H.: Mehrfachregelungen. 2. Bd. Berlin: Springer-Verlag 1971CrossRefGoogle Scholar
  4. 18.4
    Thoma, M.: Theorie linearer Regelsysteme. Braunschweig: Vieweg 1973Google Scholar
  5. 18.5
    Isermann, R.: Die Berechnung des dynamischen Verhaltens der Dampftemperaturregelung von Dampferzeugern. Regelungstechnik 14 (1966) 469–475, 519-522Google Scholar
  6. 18.6
    Isermann, R.; Baur, U.; Blessing, P.: Test case C for the comparison of different identification methods. Boston: Proc. 6th IFAC-Congress 1975Google Scholar
  7. 18.7
    Schramm, H.: Beiträge zur Regelung von Zweigrößensystemen am Beispiel eines Verdampfers. Fortschr.-Ber. VDIZ Reihe 8 (1976) Nr. 24Google Scholar
  8. 18.8
    Freund, E.: Zeitvariable Mehrgrößensysteme. Lecture Notes in Operations Research and Mathematical Systems. Berlin: Springer-Verlag 1971Google Scholar
  9. 18.9
    Sinha, N.K.: Minimal realization of transfer functions matrices-a comparative study of different methods. Int. J. Control 22 (1975) 627–639zbMATHCrossRefGoogle Scholar
  10. 18.10
    Kucera, V.: Discrete linear control. Prague: Academia 1979zbMATHGoogle Scholar
  11. 18.11
    Fisher, D.G.; Seborg, D.E.: Multivariable computer control. Amsterdam: North Holland 1976Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Rolf Isermann
    • 1
  1. 1.Technische Hochschule DarmstadtInstitut für RegelungstechnikDarmstadtWest Germany

Personalised recommendations