State Controller and State Observer

  • Rolf Isermann

Abstract

The design of the controllers described in the previous chapters was based on input/output models of the processes in form of difference equations or transfer functions, according Fig. 3.16a. Based on these models, input/output controllers could be designed either by parameter-optimization, chapter 5 or by structure-optimization, chapter 6 and 7. In both cases it is assumed that the closed loop is in a steady state before a disturbance occurs.

Keywords

Settling Action Element Summing Aircrafts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 8.1
    Bellman, R.E.: Dynamic programming. Princeton: Princeton University Press 1957Google Scholar
  2. 8.2
    Kalman, R.; Koepcke, R.V.: Optimal synthesis of linear sampling control systems using generalized performance indexes. Trans. ASME (1958) 1820–1826Google Scholar
  3. 8.3
    Athans, M. Falb, P.L.: Optimal control. New York: McGraw-Hill 1966MATHGoogle Scholar
  4. 8.4
    Kwakernaak, H.; Sivan, R.: Linear optimal control systems. New York: Wiley-Interscience 1972MATHGoogle Scholar
  5. 8.5
    Kneppo, P.: Vergleich von linearen Regelalgorithmen für Prozeßrechner. Diss. Univ. Stuttgart. PDV-Bericht KFK-PDV 96. Karlsruhe: Ges. für Kernforschung 1976Google Scholar
  6. 8.6
    Johnson, C.D.: Accomodation of external disturbances in linear regulators and servomechanical problems. IEEE Trans. Autom. Control AC 16 (1971)Google Scholar
  7. 8.7
    Kreindler, E.: On servo problems reducible to regulator problems. IEEE Trans. Autom. Control AC 14 (1969)Google Scholar
  8. 8.8
    Bux, D.: Anwendung und Entwurf konstanter, linearer Zustandsregler bei linearen Systemen mit langsam veränderlichen Parametern. Diss. Univ. Stuttgart. Fortschritt-Ber. VDI-Z Reihe 8, Nr. 21. Düsseldorf: VDI-Verlag 1975Google Scholar
  9. 8.9
    Rosenbrock, H.H.: Distinctive problems of process control. Chem. Eng. Prog. 58 (1962) 43–50Google Scholar
  10. 8.10
    Porter, B. Crossley, T.R.: Modal control. London: Taylor and Francis 1972MATHGoogle Scholar
  11. 8.11
    Gould, L.A.: Chemical process control. Reading Mass.: Addison-Wesley 1969Google Scholar
  12. 8.12
    Föllinger, 0.: Einführung in die modale Regelung. Regelungstechnik 23 (1975) 1–10Google Scholar
  13. 8.13
    Luenberger, D.G.: Observing the state of a linear system. IEEE Trans. Mil. Electron. (1964) 74–80Google Scholar
  14. 8.14
    Luenberger, D.G.: Observers for multivariable systems. IEEE Trans. AC (1966) 190–197Google Scholar
  15. 8.15
    Luenberger, D.G.: An introduction to observers. IEEE Trans. AC 16 (1971) 596–602CrossRefGoogle Scholar
  16. 8.16
    Levis, A.H.; Athans, M.; Schlueter, R.A.: On the behavior of optimal linear sampled data regulators. Preprints Joint Automatic Control Conf. Atlanta (1970), S. 695–669Google Scholar
  17. 8.17
    Schumann, R: Digitale parameteradaptive Mehrgrößenregelung. Diss. T.H. Darmstadt. PDV-Bericht 217. Karsruhe: Ges. für Kernforschung 1982Google Scholar
  18. 8.18
    Radke, F.: Ein Mikrorechnersystem zur Erprobung parameteradaptiver Regelverfahren. Diss. T.H. Darmstadt. Fortschritt Ber. VDI-Z. Reihe 8, Nr. 77, Düsseldorf: VDI-Verlag 1984Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Rolf Isermann
    • 1
  1. 1.Institut für RegelungstechnikTechnische Hochschule DarmstadtDarmstadtWest Germany

Personalised recommendations