Advertisement

State Controller and State Observer

  • Rolf Isermann

Abstract

The design of the controllers described in the previous chapters was based on input/output models of the processes in form of difference equations or transfer functions, according Fig. 3.16a. Based on these models, input/output controllers could be designed either by parameter-optimization, chapter 5 or by structure-optimization, chapter 6 and 7. In both cases it is assumed that the closed loop is in a steady state before a disturbance occurs.

Keywords

External Disturbance State Observer State Controller Feedforward Control Manipulate Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 8.1
    Bellman, R.E.: Dynamic programming. Princeton: Princeton University Press 1957Google Scholar
  2. 8.2
    Kalman, R.; Koepcke, R.V.: Optimal synthesis of linear sampling control systems using generalized performance indexes. Trans. ASME (1958) 1820–1826Google Scholar
  3. 8.3
    Athans, M. Falb, P.L.: Optimal control. New York: McGraw-Hill 1966MATHGoogle Scholar
  4. 8.4
    Kwakernaak, H.; Sivan, R.: Linear optimal control systems. New York: Wiley-Interscience 1972MATHGoogle Scholar
  5. 8.5
    Kneppo, P.: Vergleich von linearen Regelalgorithmen für Prozeßrechner. Diss. Univ. Stuttgart. PDV-Bericht KFK-PDV 96. Karlsruhe: Ges. für Kernforschung 1976Google Scholar
  6. 8.6
    Johnson, C.D.: Accomodation of external disturbances in linear regulators and servomechanical problems. IEEE Trans. Autom. Control AC 16 (1971)Google Scholar
  7. 8.7
    Kreindler, E.: On servo problems reducible to regulator problems. IEEE Trans. Autom. Control AC 14 (1969)Google Scholar
  8. 8.8
    Bux, D.: Anwendung und Entwurf konstanter, linearer Zustandsregler bei linearen Systemen mit langsam veränderlichen Parametern. Diss. Univ. Stuttgart. Fortschritt-Ber. VDI-Z Reihe 8, Nr. 21. Düsseldorf: VDI-Verlag 1975Google Scholar
  9. 8.9
    Rosenbrock, H.H.: Distinctive problems of process control. Chem. Eng. Prog. 58 (1962) 43–50Google Scholar
  10. 8.10
    Porter, B. Crossley, T.R.: Modal control. London: Taylor and Francis 1972MATHGoogle Scholar
  11. 8.11
    Gould, L.A.: Chemical process control. Reading Mass.: Addison-Wesley 1969Google Scholar
  12. 8.12
    Föllinger, 0.: Einführung in die modale Regelung. Regelungstechnik 23 (1975) 1–10Google Scholar
  13. 8.13
    Luenberger, D.G.: Observing the state of a linear system. IEEE Trans. Mil. Electron. (1964) 74–80Google Scholar
  14. 8.14
    Luenberger, D.G.: Observers for multivariable systems. IEEE Trans. AC (1966) 190–197Google Scholar
  15. 8.15
    Luenberger, D.G.: An introduction to observers. IEEE Trans. AC 16 (1971) 596–602CrossRefGoogle Scholar
  16. 8.16
    Levis, A.H.; Athans, M.; Schlueter, R.A.: On the behavior of optimal linear sampled data regulators. Preprints Joint Automatic Control Conf. Atlanta (1970), S. 695–669Google Scholar
  17. 8.17
    Schumann, R: Digitale parameteradaptive Mehrgrößenregelung. Diss. T.H. Darmstadt. PDV-Bericht 217. Karsruhe: Ges. für Kernforschung 1982Google Scholar
  18. 8.18
    Radke, F.: Ein Mikrorechnersystem zur Erprobung parameteradaptiver Regelverfahren. Diss. T.H. Darmstadt. Fortschritt Ber. VDI-Z. Reihe 8, Nr. 77, Düsseldorf: VDI-Verlag 1984Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Rolf Isermann
    • 1
  1. 1.Institut für RegelungstechnikTechnische Hochschule DarmstadtDarmstadtWest Germany

Personalised recommendations