Skip to main content

Sensitivity and Robustness with Constant Controllers

  • Chapter
Digital Control Systems

Abstract

The preceding controller design methods assumed that the process model is exactly known. However, this is never the case in practice. In theoretical modelling as well as in experimental identification one must always take into account both the small and often the large differences between the derived process model and the real process behaviour. If, for simplicity, it is assumed that the structure and the order of the process model are chosen exactly then these differences are manifested as parameter errors. Moreover, during most cases of normal operation, changes of process behaviour arise for example through changes of the operating point (the load) or changes of the energy- mass- or momentum storages or flows. When designing controllers one must therefore assume

  • the assumed process model is inexact;

  • the process behaviour changes with time during operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horowitz, I.M.: Synthesis of feedback systems. New York: Academic Press 1963

    MATH  Google Scholar 

  2. Kreindler, E.: Closed-loop sensitivity reduction of linear optimal control systems. IEEE Trans. AC 13 (1968) 254–262

    Article  Google Scholar 

  3. Perkins, W.R.; Cruz, J.B.: Engineering of dynamic systems. New York: Wiley 1969

    Google Scholar 

  4. nd IFAC-Symp on System Sensitivity and Adaptivity, Dubrovnik (1968). Preprints Yugoslav Committee for Electronics and Automation (ETAN ), Belgrad/Jugoslawien

    Google Scholar 

  5. rd IFAC-Symp. on Sensitivity, Adaptivity and Optimality, Ischia (1973). Proceedings instrument Soc. of America (ISA), Pittsburgh.

    Google Scholar 

  6. Tomovic, R.; Vucobratovic, M.: General sensitivity theory. New York: Elsevier 1972

    MATH  Google Scholar 

  7. Frank, P.M.: Empfindlichkeitsanalyse dynamischer Systeme. München: Oldenbourg 1976

    MATH  Google Scholar 

  8. Anderson, B.D.O.; Moore, J.B.: Linear optimal control. Englewood Cliffs, N.J.: Prentice Hall 1971

    MATH  Google Scholar 

  9. Cruz, J.B.: System sensitivity analysis. Stroudsburg: Dowen, Hutchinson and Ross 1973

    Google Scholar 

  10. Andreev, Y.N.: Algebraic methods of state space in linear object control theory. Autom. and Remote Control 39 (1978) 305–342

    Google Scholar 

  11. Frank, P.M.: The present state and trends using sensitivity analysis and synthesis in linear optimal control. Acta polytechnica, Prâce CVUT v Praze, Vedeekâ Konference 1982

    Google Scholar 

  12. Kreindler, E: On minimization of trajectory sensitivity. Int. J. Control 8 (1968) 89–96

    Article  Google Scholar 

  13. Elmetwelly, M.M.; Rao, N.D.: Design of low sensitivity optimal regulators for synchroneous machines. Int. J. Control 19 (1974) 593–607

    Article  Google Scholar 

  14. Byrne, P.C.; Burke, M.: Optimization with trajectory sensitivity considerations. IEEE Trans. Autom. Control 21 (1976) 282–283

    Article  MATH  Google Scholar 

  15. Rillings, J.H.; Roy, R.J.: Analog sensitivity design of Saturn V launch vehicle. IEEE Trans. AC 15 (1970) 437–442

    Article  Google Scholar 

  16. Graupe, D.: Optimal linear control subject to sensitivity constraints. IEEE Trans. AC 19 (1974) 593–594

    Article  MathSciNet  MATH  Google Scholar 

  17. Subbayyan, R.; Sarma, V.V.S.; Vaithiluigam, M.C.: An approach for sensitivity reduced design of linear regulators. Int. J. Control 9 (1978) 65–74

    MATH  Google Scholar 

  18. Krishnan, K.R.; Brzezowski, S.: Design of robust linear regulator with prescribed trajectory insensitivity to parameter variations. IEEE Trans. AC 23 (1978) 474–478

    Article  MATH  Google Scholar 

  19. Verde, C.; Frank, P.M.: A design procedure for robust linear suboptimal regulators with preassigned trajectory insensitivity. CDC-Conference, Florida 1982

    Google Scholar 

  20. Verde, M.C.: Empfindlichkeitsreduktion bei linearen optimalen Regelungen. Diss. GH Duisburg 1983

    Google Scholar 

  21. Kalman, R.E.: When is a linear system optimal? Trans. ASME, J. Basic Eng. 86 (1964) 51–60

    Google Scholar 

  22. Safonov, M.G.; Athans, M.: Gain and phase margin for multivariable. I OR Regulators. IEEE Trans AC 22 (1977) 173–179

    Article  MathSciNet  MATH  Google Scholar 

  23. Safonov, M.G.: Stability and robustness of multivariable feedback systems. Boston: MIT-Press, 1980

    MATH  Google Scholar 

  24. Frank, P.M.: Entwurf parameterunempfindlicher und robuster Regelkreise im Zeitbereich-Definitionen, Verfahren und ein Vergleich. Automatisierungstechnik 33 (1985) 233–240

    MATH  Google Scholar 

  25. Horowitz, 1; Sidi, M.: Synthesis of cascaded multiple-loop feedback systems with large plantparameter ignorance. Automatica 9 (1973) 588 — 600

    Google Scholar 

  26. Ackermann, J.: Entwurfsverfahren für robuste Regelungen. Regelungstechnik 32 (1984) 143–150

    MATH  Google Scholar 

  27. Ackermann, J (Ed.): Uncertainty and control. Lecture Notes 76. Berlin: Springer-Verlag (1985)

    Google Scholar 

  28. Tolle, H.: Mehrgrößen-Regelkreissynthese, Bd. I und II, München: Oldenbourg 1983 und 1985

    Google Scholar 

  29. Kofahl, R.: Robustheitsanalyse zeitdiskreter, optimaler Zustandsregler. Interner Ber. Inst. f. Regelungstechnik, T.H. Darmstadt (1984)

    Google Scholar 

  30. Bux, D.: A new closed solution design of constant feedback control for systems with large parameter variations. 3rd IFAC-Symp. on Sensitivity, Adaptivity and Optimality, Ischia, Haly (1973), Inst. Soc. Am.

    Google Scholar 

  31. Bux, D.: Anwendung und Entwurf konstanter, linearer Zustandsregler bei linearen Systemen mit langsam veränderlichen Parameter. Diss. Univ. Stuttgart. Fortschritt Ber. VDI—Z. Reihe 8 Nr. 21. Düsseldorf: VDI-Verlag 1975

    Google Scholar 

  32. Isermann, R.; Eichner M.: Über die Lastabhängigkeit der Dampftemperatur-Regelung des Mehrgrößen-Regelsystems „Trommelkessel“. Brennstoff, Wärme, Kraft 20 (1968) 453–459

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Isermann, R. (1989). Sensitivity and Robustness with Constant Controllers. In: Digital Control Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86417-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86417-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86419-3

  • Online ISBN: 978-3-642-86417-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics