Advertisement

Mechanismus und pharmakologische Beeinflussung der endokrinen Lipolyse

  • E. Westermann
Part of the Symposion der Deutschen Gesellschaft für Endokrinologie book series (ENDOKRINOLOGIE, volume 12)

Zusammenfassung

Die Vorstellung, daß die energetischen. Bedürfnisse des Organismus ganz überwiegend durch die Mobilisation und Verbrennung von Kohlenhydraten gedeckt werden (Gemmill, 1942), läßt sich heute nicht mehr aufrecht erhalten. Abgesehen davon, daß die Glykogenvorräte gar nicht ausreichen würden, um bei längerem Nahrungsentzug die calorische Homöostase des Organismus aufrecht zu erhalten, sprechen auch Messungen des respiratorischen Quotienten im Hungerzustand oder bei Muskelarbeit gegen eine bevorzugte Utilisation von Kohlenhydraten (Issekutz, 1964).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ahlquist, R. P.: A study of the adrenotropic receptors. Amer. J. Physiol. 153, 586 (1948).PubMedGoogle Scholar
  2. Ariens, E. J., J. M. van Rossum, and A. M. Simonis: A theoretical basis of molecular pharmacology. Part I: Interaction of one or two compounds with one receptor system. Arzneimittel-Forsch. 6, 282 (1956).Google Scholar
  3. Astwood, E. B., R. J. Barrett, and H. Friesen: Two metabolically active peptides from porcine pituitary glands. Proc. nat. Acad. Sci. (Wash.) 47, 1525 (1961).CrossRefGoogle Scholar
  4. Aulich, A., K. Stock, and E. Westermann: Lipolytic effects of cyclic adenosine-3, 5′-monophosphate and its dibutyryl derivative, and their inhibition by α-and β-adrenolytics. Life Sci. (1967) Im Druck.Google Scholar
  5. Barrett, R. J., H. Friesen, and E. B. Astwood: Characterization of pituitary and peptide hormones by electrophoresis in starch gel. J. biol. Chem. 237, 432 (1962).PubMedGoogle Scholar
  6. Beaton, J. R., A. J. Szlavko, B. M. Box, and J. A. F. Stenevson: Biological effects of anorexogenic and fat-mobilizing substances from rat urine. Canad. J. Physiol. Pharmacol. 42, 657 (1964).CrossRefGoogle Scholar
  7. Belleau, B.: Conformational pertubation in relation to the regulation of enzyme and receptor behaviour. Advances in Drug Research, Vol. 2, p. 89. London: Academic Press 1965.Google Scholar
  8. Bernsmeier, A., u. W. Rudolph: Myocardstoffwechsel. Verh. dtsch. Ges. Kreisl.-Forsch. 27, 59 (1961).Google Scholar
  9. Bieck, P., K. Stock, and E. Westermann: Lipolytic action of serotonin in vitro. Life Sci. 5, 2157 (1966).CrossRefGoogle Scholar
  10. E. Westermann —— — Über die Bedeutung des Serotonins im Fettgewebe. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 256, 218 (1967).CrossRefGoogle Scholar
  11. Bing, R. J., A. Siegel, I. Ungar, and M. Gilbert: Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Amer. J. Med. 16, 504 (19CrossRefGoogle Scholar
  12. Birk, Y., and C. H. Li: Isolation and properties of a new, biologically active peptide from sheep pituitary glands. J. biol. Chem. 239, 1048 (1964).PubMedGoogle Scholar
  13. Bizzi, A., A. Jori, E. Veneroni, and S. Garattini: Effect of 3,5-Dimethylpyrazole on blood free fatty acids and glucose. Life Sci. 3, 1371 (1964).CrossRefGoogle Scholar
  14. Black, J. W., A. F. Crowther, R. G. Shanks, L. H. Smith, and A. C. Dornhorst: A new adrenergic β-receptor antagonist. Lancet 1964, I, 1080.CrossRefGoogle Scholar
  15. Bloom, B. M., and I. M. Goldman: The nature of catecholamine-adenine mononucleotide interactions in adrenergic mechanisms. Advances in Drug Research, Vol. 3, p. 121. London: Academic Press 1966.Google Scholar
  16. Brodie, B. B., R. P. Maickel, and D. N. Stern: Autonomic nervous system and adipose tissue. In: Handbook of Physiology, Section 5, Adipose Tissue, p. 583. Baltimore: Williams and Wilkins Co., 1965.Google Scholar
  17. Burns, J. J., K. I. Colville, L. A. Lindsay, and R. A. Salvador: Blockade of some metabolic effects of catecholamines by N-isopropyl methoxamine (BW 61-43). J. Pharmacol. exp. Ther. 144, 163 (1964).PubMedGoogle Scholar
  18. L. A. Lindsay, and R. A. Salvador —, and L. Lemberger: N-Tertiary butyl methoxamine, a specific antagonist of the metabolic actions of epinephrine. Fed. Proc. 24, 298 (1965).Google Scholar
  19. Carlson, L. A., and L. Orö: The effect of nicotinic acid on the plasma free fatty acids. Demonstration of a metabolic type of sympathicolysis. Acta med. scand. 172, 641 (1962).PubMedCrossRefGoogle Scholar
  20. —, and J. Östman: Effect of salicylates on plasma free fatty acids in normal and diabetic subjects. Metabolism 10, 781 (1961).PubMedGoogle Scholar
  21. Chalmers, T. M., G. L. S. Pawan, and A. Kekwick: Fat-mobilizing and ketogenic activity of urine extracts: relation to corticotrophin and growth hormone. Lancet 1960, II, 6.CrossRefGoogle Scholar
  22. Dole, V. P.: Effect of nucleic acid metabolites on lipolysis in adipose tissue. J. biol. Chem. 236, 3125 (1961).PubMedGoogle Scholar
  23. Fain, J. N., V. P. Kovacev, and R. O. Scow: Effect of growth hormone and dexamethasone on lipolysis and metabolism in isolated fat cells of the rat. J. biol. Chem. 240, 3522 (1965).PubMedGoogle Scholar
  24. Fassina, G.: Effects on lipidmobilisation of the Beta-adrenergic blocking drugs, propranolol and INPEA. J. Pharm. Pharmacol. 18, 399 (1966).PubMedCrossRefGoogle Scholar
  25. Friesen, H. J., M. Irie, and R. J. Barrett: An immunologic study of two metabolically active peptides from the anterior pituitary gland. J. exp. Med. 115, 513 (1962).PubMedCrossRefGoogle Scholar
  26. Gemmill, C. L.: Fuel for muscular exercise. Physiol. Rev. 22, 32 (1942).Google Scholar
  27. Gerritsen, G. C., and W. E. Dulin: The effect of ö-methylpyrazole-3-carboxylic acid on carbohydrate and free fatty acid metabolism. J. Pharmacol. exp. Ther. 150, 491 (1965a).PubMedGoogle Scholar
  28. — — Effect of a new hypoglycémie agent, 3,5-dimethylpyrazole, on carbohydrate and free fatty acid metabolism. Diabetes 14, 507 (1965b).PubMedGoogle Scholar
  29. Gordon, R. S., and A. Cherkes: Unesterified fatty acids in human blood plasma. J. clin. Invest. 35, 206 (1956).PubMedCrossRefGoogle Scholar
  30. — — Production of unesterified fatty acids from isolated rat adipose tissue incubated in vitro. Proc. Soc. exp. Biol. (N.Y.) 97, 150 (1958).Google Scholar
  31. Havel, R. J.: Autonomie nervous system and adipose tissue. In: Handbook of Physiology, Section 5, Adipose Tissue, p. 575. Baltimore: Williams and Wilkins 1965.Google Scholar
  32. Horton, E. W.: Biological activities of pure prostaglandines. Experientia (Basel) 21, 113 (1965).CrossRefGoogle Scholar
  33. Hunter, A., and C. E. Downs: The inhibition of arginase by amino acids. J. biol. Chem. 157, 427 (1945).Google Scholar
  34. Hynie, S., G. Krishna, and B. B. Brodie: Theophylline, a tool for the study of the interaction of thyroid and sympathetic systems in hormone-induced lipolysis. Fed. Proc. 24, 188 (1965).Google Scholar
  35. Issekutz, B.: Effect of exercise on the metabolism of plasma free fatty acids. In: Fat as a tissue, pp. 228. New York: Mc Graw-Hill Book Co. 1964.Google Scholar
  36. Jungas, R. L., and E. G. Ball: Studies on the metabolism of adipose tissue. XII. The effects of insulin and epinephrine on free fatty acid and glycerol production in the presence and absence of glucose. Biochemistry 2, 383 (1963).CrossRefGoogle Scholar
  37. Keul, J., E. Doll, H. Steim, U. Fleer und H. Reindell: Über den Stoffwechsel des menschlichen Herzens. III. Der oxydative Stoffwechsel des menschlichen Herzens unter verschiedenen Arbeitsbedingungen. Pflügers Arch. ges. Physiol. 282, 43 (1965).CrossRefGoogle Scholar
  38. Klainer, L. M., Y. M. Chi, S. L. Freidberg, T. W. Rall, and E. W. Sutherland: Adenyl cyclase. IV. The effect of neurohormones on the formation of adenosine-3′,5′-phosphate by preparations from brain and other tissues. J. biol. Chem. 237, 1239 (1962).PubMedGoogle Scholar
  39. Pilkington, T. R. E., R. D. Lowe, B. F. Robinson, and E. Titterington: Effect of adrenergic blockade on glucose and fatty acid mobilization in man. Lancet 1962, II, 316.CrossRefGoogle Scholar
  40. Raben, M. S., R. Landolt, F. A. Smith, K. Hofmann, and H. Yajima: Adipokinetic activity of synthetic peptides related to corticotropin. Nature (Lond.) 189, 681 (1961).CrossRefGoogle Scholar
  41. Rizack, M. A.: An epinephrine-sensitive lipolytic activity in adipose tissue. J. biol. Chem. 236, 657 (1961).Google Scholar
  42. — Activation of an epinephrine-sensitive lipolytic activity from adipose tissue by adenosine-3,5′-phosphate. J. biol. Chem. 239, 392 (1964).PubMedGoogle Scholar
  43. Rudman, D., S. J. Brown, and M. F. Malkin: Adipokinetic actions of adrenocorticotropin, thyroid-stimulating hormone, vasopressin, α-and β-melanoeyte-stimulating hormones, fraction H, epinephrine and norepinephrine in the rabbit, guinea pig, hamster, rat, pig and dog. Endocrinology 72, 527 (1963).CrossRefGoogle Scholar
  44. M. F. Malkin —, M. F. Malkin, S. J. Brown, L. A. Garcia, and L. L. Abell: Inactivation of adrenocorticotropin,α-and β-melanocyte-stimulating hormones, vasopressin and pituitary fraction H by adipose tissue. J. Lipid Res. 5, 38 (1964).Google Scholar
  45. M. F. Malkin, M. F. Malkin, S. J. Brown, L. A. Garcia, and L. L. Abell —, F. Seidman, S. J. Brown, and R. L. Hirsch: Adipokinetic activity of porcine fraction H in the rabbit, guinea pig, rat and mouse. Endocrinology 70, 233 (1962).PubMedCrossRefGoogle Scholar
  46. Schotz, M. C., and I. H. Page: Effect of adrenergic blocking agents on the release of free fatty acids from rat adipose tissue. J. Lipid Res. 1, 466 (1960).PubMedGoogle Scholar
  47. Schwabe, U., u. A. Hasselblatt: Abfall von Blutzucker und unveresterten Fettsäuren nach Isoxazolderivaten. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 251, 121 (1965).CrossRefGoogle Scholar
  48. — — Hemmung der Lipolyse im Fettgewebe durch 5-Methylisoxazol-3-carbonsäure. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 255, 76 (1966).CrossRefGoogle Scholar
  49. Steinberg, D.: The dynamics of FFA mobilization and utilization. In: Drugs Affecting Lipid Metabolism. Basel: Karger 1966 (Im Druck).Google Scholar
  50. —, E. Shafrir, and M. Vaughan: Direct effect of glucagon on release of unesterified fatty acids (UFA) from adipose tissue. Clin. Res. 7, 220 (1959).Google Scholar
  51. M. Vaughan —, M. Vaughan, P. J. Nestel, and S. Bergström: Effects of prostaglandin E opposing those of catecholamines on blood pressure and on triglyceride breakdown in adipose tissue. Biochem. Pharmacol. 12, 764 (1963).PubMedCrossRefGoogle Scholar
  52. Stock, K., and E. Westermann: Concentration of norepinephrine. serotonin and histamine, and of amine-metabolizing enzymes in mammalian adipose tissue. J. Lipid Res. 4, 297 (1963).PubMedGoogle Scholar
  53. — — Effect of α-methyl-dopa and α-methyl-m-tyrosine on the mobilization of free fatty acids. Experientia (Basel) 20, 495 (1964).CrossRefGoogle Scholar
  54. — — Quantitative estimation and tissue distribution of Kö 592, l-(3-methylphenoxy)-3-isopropyl-aminopropanol (2)-hydrochloride, a new β-receptor blocking agent. Biochem. Pharmacol. 14, 227 (1965a).CrossRefGoogle Scholar
  55. — — Über die Bedeutung des Noradrenalingehaltes im Fettgewebe für die Mobilisierung unveresterter Fettsäuren. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 251, 465 (1965b).Google Scholar
  56. — — Über die lipolytische Wirkung von natürlichem und synthetischem adrenocorticotropen Hormon (ACTH). Naunyn-Schmiedebergs Arch. exp, Path. Pharmak. 251, 488 (1965c).Google Scholar
  57. — — Über den Mechanismus der lipolytischen Wirkung des Physostigmins. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 252, 433 (1966a).Google Scholar
  58. — — Hemmung der Lipolyse durch α-und β-Sympathicolytica, Nicotinsäure und Prostaglandin E1Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 254, 334 (1966b).CrossRefGoogle Scholar
  59. — — Competitive and non-competitive inhibition of lipolysis by α-and β-adrenergic blocking agents, methoxamine derivates and prostaglandin E1. Life Sci. 5, 1667 (1966c).CrossRefGoogle Scholar
  60. Strand, O., M. Vaughan, and D. Steinberg: Rat adipose tissue lipases: hormone sensitive lipase activity against triglycerides compared with activity against lower glycerides. J. Lipid Res. 5, 554 (1964).PubMedGoogle Scholar
  61. Sutherland, E. W., and T. W. Rall: The relation of adenosine-3′,5′-phosphate and phosphorylase to the action of catechol amines and other hormones. Pharmacol. Rev. 12, 265 (1960).Google Scholar
  62. Vaughan, M.: Effect of hormones on phosphorylase activity in rat adipose tissue. J. biol. Chem. 235, 3049 (1960).PubMedGoogle Scholar
  63. —, and J. Barchas: Effects of melatonin and related compounds on the release of glycerol from rat adipose tissue in vitro. J. Pharmacol. exp. Ther. 152, 298 (1966).PubMedGoogle Scholar
  64. —, J. E. Berger, and D. Steinberg: Hormone sensitive lipase activities in adipose tissue. J. biol. Chem. 239, 401 (1964).PubMedGoogle Scholar
  65. J. E. Berger, and D. Steinberg —, and D. Steinberg: Glyceride biosynthesis, glyceride breakdown and glycogen breakdown in adipose tissue: mechanisms and regulation. In Handbook of Physiology, Section 5, Adipose Tissue, p. 239. Baltimore: Williams and Wilkins 1965.Google Scholar
  66. Wenke, M. E., E. Mühlbachovà, and S. Hynie: Effects of some sympathicotropic agents on the lipid metabolism. Arch. int. Pharmacodyn. CXXXVI, 104 (1962).Google Scholar
  67. Westermann, E.: Cumulative effects of reserpine on the pituitary-adrenocortical and sympathetic nervous system. In Drugs and Enzymes, pp. 381–392. Oxford: Pergamon Press 1965.Google Scholar
  68. — Sympathicus und Fettstoffwechsel. Acta neuroveg. (Wien) XXX, H. 1-4 (1967).Google Scholar
  69. — Die Lipolyse und ihre pharmakologische Beeinflußbarkeit. Fette in der Medizin 7, 8 (1966).Google Scholar
  70. — Drugs affecting the mobilization of free fatty acids. In Pathophysiological and clinical aspects of lipid metabolism, p. 38–48. Stuttgart: Georg Thieme 1966.Google Scholar
  71. — Stimulierung der Lipolyse durch Hypophysenhormone. Fette in der Medizin (1967) (Im Druck).Google Scholar
  72. —, P. Bieck und K. Stock: Ausschüttung lipolytisch wirksamer Hypophysenhormone durch Stimulierung von „Muscarin-Reeeptoren“ im Gehirn. Naunyn-Sehmiedebergs Arch. exp. Path. Pharmak. 255, 93 (1966).CrossRefGoogle Scholar
  73. K. Stock —, u. K. Stock: Wirkung von α-Methyl-Dopa und α-Methyl-m-Tyrosin auf den Fettstoffwechsel der Ratte. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 247, 299 (1964).CrossRefGoogle Scholar
  74. K. Stock, u. K. Stock — — Über die Wirkung von α-Sympathicolytica auf die Lipolyse. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 250, 290 (1965).CrossRefGoogle Scholar
  75. K. Stock, u. K. Stock — — und P. Bieck: False transmitter substances in mammalian adipose tissue. Progr. biochem. Pharmacol., Vol. 3, pp. 233–247. Basel-New York: Karger 1967.Google Scholar
  76. White, J. E., and F. L. Engel: A lipolytic action of epinephrine and norepinephrine on rat adipose tissue in vitro. Proc. Soc. exp. Biol. (N.Y.) 99, 375 (1958).Google Scholar
  77. — — Lipolytic action of corticotropin on rat adipose tissue in vitro. J. Clin. Invest. 37, 1556 (1958); Übersicht beiPubMedCrossRefGoogle Scholar
  78. Engel, F. L., and H. E. Lebovitz: Peptide Hormones. Some new developments and their clinical implications. Amer. J. Med. 35, 721 (1963).PubMedCrossRefGoogle Scholar
  79. Williamson, J. R.: Adipose tissue. Morphological changes associated with lipid metabolism. J. Cell. Biol. 20, 57 (1964).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1967

Authors and Affiliations

  • E. Westermann
    • 1
  1. 1.Pharmakologischen InstitutUniversität Frankfurt a. M.Deutschland

Personalised recommendations