Die Biochemie des intermediären Stoffwechsels

  • Konrad Lang
Part of the Handbuch der Allgemeinen Pathologie book series (PATHOLOGIE, volume 4 / 2)

Zusammenfassung

Unter dem intermediären Stoffwechsel versteht man alle Stoffwechselprozesse, die sich in den Zellen und Geweben des Organismus abspielen. Er umfaßt also alle Veränderungen, welche die körpereigenen Substanzen durchmachen, und alle Veränderungen, welche die Nährstoffe nach ihrer Resorption aus dem Magen-Darmtrakt erleiden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abdou, I. A. and H. Tarver jr.: Plasma protein. Loss from circulation and catabolism to carbon dioxyde. J. of Biol. Chem. 190, 769, 781 (1951).Google Scholar
  2. Abrams, A., and H. Boxsook: The conversion of L-Histidine to glutamic acid by liver enzymes. J. of Biol. Chem. 198, 205 (1952).Google Scholar
  3. Allfrey, V. G., A. E. Mirsity and H. Stern: The chemistry of the cell nucleus. Adv. Enzymol. 16, 411 (1955).Google Scholar
  4. Awapara, J., and H. N. Marvin: The relative absorption of intravenously administred amino acids by the liver, kidney and muskle of the rat. J. of Biol. Chem. 178, 691 (1948).Google Scholar
  5. Bach, S. J.: The metabolism of protein constituents in the mammalian body. Oxford 1952.Google Scholar
  6. Baddiley, J.: The structure of Coenzyme A. Adv. Enzymol. 16, 1 (1955).Google Scholar
  7. Barron, E. S. G.: Modern Trends in Physiology and Biochemistry. New York 1952.Google Scholar
  8. Becker, C. E., and H. G. Day: Utilization of Glucosone and the synthesis of Glucosamine in the rat. J. of Biol. Chem. 201, 795 (1953).Google Scholar
  9. (a).
    Bennett, E. L., and B. J. Krueckel: Renewal of nucleotides and nucleic acids in C57 mice studied with Adenine-4,6-C14. Biochim. et Biophysica Acta 17, 503 (1955).Google Scholar
  10. (b).
    Bennett, E. L., and B. J. Krueckel: The incorporation of Adenine-4,6-C14 into acid-soluble nucleotides in Cdoerschuk, A. P.: Biophysica Acta 17, 515 (1955).Google Scholar
  11. Berg, C. P.: Physiology of the D-Amino acids. Physiologic. Rev. 33, 145 (1953).Google Scholar
  12. Bergström, S., and R. T. Holman- Lipoxidase and the autoxidation of unsaturated fatty acids. Adv. Enzymol. 8, 425 (1948).Google Scholar
  13. Bernstein, R. E.: Nature (Lond.) 172, 911 (1953).Google Scholar
  14. Blascrko, H.: The amino acid Decarboxylases of mammalian tissue. Adv. Enzymol. 5, 67 (1945).Google Scholar
  15. Borsook, H.: The biosynthesis of proteins and peptides including isotopic tracer studies. Fortschr. Chem. organ. Naturstoffe 9, 292 (1952).Google Scholar
  16. Borsook, H: Enzymatic synthesis of Peptide bonds. In: Chemical pathways of metabolism, herausgeg. von D. M. Greenberg, Bd. II, S. 173. New York 1954.Google Scholar
  17. Borsook, H., A. Abrams and P. H. Lowy: Fructose-aminoacids in liver: stimuli of amino acid incorporation in vitro. J. of Biol. Chem. 215, 111 (1955).Google Scholar
  18. Borsook, H., C. L. Deasy, A. J. Haagen-Smit, G. Keighley and P. H. Lowy: The degradation of L-Lysine in guinea pig liver homogenate: formation of a-aminoadipic acid. J. of Biol. Chem. 176, 1383 (1948).Google Scholar
  19. Bostroem, H.: On the metabolism of the sulfate group of Chondroitinsulfuric acid. J. of Biol. Chem. 196, 477 (1952).Google Scholar
  20. Bostroem, H., and B. Miinsson: On the enzymatic exchange of the sulfate group of Chondroitinsulfuric acid in slices of cartilage. J. of Biol. Chem. 196, 483 (1952).Google Scholar
  21. Breusch, F. L.: The biochemistry of fatty acid catabolism. Adv. Enzymol. 8, 343 (1948).Google Scholar
  22. Brown, G. B.: Precursors of nucleic acids. J. Cellul. a. Comp. Physiol. 38, Suppl. 1, 121 (1951).Google Scholar
  23. Brugsch, J.: Hämoglobin, der rote Blutfarbstoff. Leipzig 1950.Google Scholar
  24. Bücher, T.: Probleme der Energieübertragung in lebenden Zellen. Adv. Enzymol. 14, 1 (1953).Google Scholar
  25. Cantoni, G. L.: S-Adenosylmethionin. A new intermediate formed enzymatically from L-Methionine and Adenosintriphosphate. J. of Biol. Chem. 204, 403 (1953).Google Scholar
  26. Caputto, R., L. Leloir, R. E. Trucco, C. E. Cardini and A. C. Paladini: The enzymatic conversion of Galactose into Glucose derivates. J. of Biol. Chem. 179, 498 (1949).Google Scholar
  27. Caputto, R., and R. E. Trucco: A new Galactose-containing compound from mammary gland. Nature (Lond.) 169, 1061 (1952).Google Scholar
  28. Caspersson, T. O.: Cell growth and cell function. New York 1950.Google Scholar
  29. Chaikoff, I. L., and G. W. Brown jr.: Fat metabolism and Acetoacetate formation. In: Chemical pathways of metabolism. Bd. I, S. 277. New York 1954.Google Scholar
  30. Chaikoff, I. L., and D. B. Zilversmith: Radioactive Phosphorus: its application to the study of phospholipoid metabolism. Adv. Biol. a. Med. Physics 1, 322 (1948).Google Scholar
  31. Challenger, F.: Biological methylations. Adv. Enzymol. 12, 429 (1951).Google Scholar
  32. Chargaff, E.: Chemical specifity of nucleic acids an mechanism of their enzymatic degradation. Experientia (Basel) 6, 201 (1950).Google Scholar
  33. Chou, T. C., and M. Sodak: The acetylation of n-Glucosamine by pigeon liver extracts. J. of Biol. Chem. 196, 105 (1952).Google Scholar
  34. Christensen, H. N., T. R.Riggs, H. Fisher and I. M. Palatine: Amino acid concentration by a free cell neoplasm: relations among amino acids. J. of Biol. Chem 198, 1, 17 (1952)Google Scholar
  35. Christman, A. A.: Purine and Pyrimidine metabolism. Physiologic. Rev. 32, 303 (1952).Google Scholar
  36. Claude, A.: Proteins, lipids and nucleic acids in cell structures and function. Adv. Protein Chem. 5, 423 (1949).Google Scholar
  37. Cohen, P. P.: Nitrogen metabolism of amino acids. In: Chemical Pathways of metabolism, herausgeg. von D. M. Greenberg, Bd. II, S. 1. New York 1954.Google Scholar
  38. Cohen, S. S.: Other pathways of Carbohydrate metabolism. In: Chemical pathways of metabolism, herausgeg. von D. M. Greenberg, Bd. I, S. 173. New York 1954.Google Scholar
  39. Colowlcx, S. P.: Transphosphorylating Enzymes of fermentation. In: The Enzymes von J. B. Sumner u. K. Myrbäck, Bd. II/1, S. 114. New York 1951.Google Scholar
  40. Cori, C. G.: Glycogen breakdown and synthesis in animal tissues. Endocrinology 26, 285 (1940).Google Scholar
  41. Cori, G. T., and C. F. Cori: Crystalline muskel Phosphorylase. J. of Biol. Chem. 151, 57 (1943).Google Scholar
  42. Davis, B. D.: Intermediates in amino acid biosynthesis. Adv. Enzymol. 16, 247 (1955).Google Scholar
  43. Dickens, F.: Anaerobic glycolysis, respiration and the Pasteur effect. In: The Enzymes von J. B. Sumner u. K. Myrbäck, Bd. II/1, S. 614. New York 1951.Google Scholar
  44. Dickens, F., and G. E. Glocx: Direct oxidation of Glucose-6-phosphate, 6-Phosphogluconate and Pentose5-phosphate by enzymes of animal origin. Biochemic. J. 50, 81 (1951).Google Scholar
  45. Doerschuk, A. P.: Some studies on the metabolism of Glycerol-1-C14. J. of Biol. Chem. 193, 39 (1951).Google Scholar
  46. Doerschuk, A. P.: Radio-tracer studies of the biosynthesis of conjugated D-Glucuronic acid. J. of Biol. Chem. 195, 855 (1952).Google Scholar
  47. Doerschuk, A. P.: Mechanism studies of Glycogen and Glyceride-Glycerol biosynthesis. J. of Biol. Chem. 196, 423 (1952).Google Scholar
  48. Dorfman, R. I.: In vivo metabolism of neutral steroid hormones. J. Clin. Endocrin. a. Metabolism 14, 318 (1954).Google Scholar
  49. Dorfman, R. I., and F. Ungar: Metabolism of steroid hormones. Minneapolis 1953.Google Scholar
  50. Douglas, J. F., and C. G. King: The conversion of C14-labeled Glucose to Glucuronic acid in the guinea pig. J. of Biol. Chem. 202, 865 (1953).Google Scholar
  51. Pounce, A. L.: The significance of enzyme studies on isolated cell nuclei. Internat. Rev. Cytology 3, 199 (1954).Google Scholar
  52. Drabkin, D. L.: Metabolism of the Hemin-Chromoproteins. Physiologic. Rev. 31, 345 (1951).Google Scholar
  53. Edlbacher, S.: Histidase and Urocaninase. Erg. Enzymforsch. 9, 131 (1943).Google Scholar
  54. Eisenberg jr., F.: The formation of Glucose and Glucuronic acid from Lactate-3-C14 in vitro. J. of Biol. Chem. 212, 501 (1955).Google Scholar
  55. Fink, R. M., K. Fink and R. B. Henderson: Amino acid formation by tissue slices incubated with pyrimidines. J. of Biol. Chem. 201, 349 (1953).Google Scholar
  56. Forker, L. L., I. L. Chaikoff and W. O. Reinhard: Circulation of plasma proteins: their transport to Lymph. J. of Biol. Chem. 197, 625 (1952).Google Scholar
  57. Fromageot, C.: Oxidation of organic Sulfur in animals. Adv. Enzymol. 7, 369 (1947).Google Scholar
  58. Fromageot, C.: The metabolism of Sulfur and its relations to general metabolism. Harvey Lect. 1953/54.Google Scholar
  59. Fuxushima, D. K., and R. S. Rosenfeld: Sterol and steroid metabolism. In: Chemical pathways of metabolism, herausgeg. von D.M. Green-Berg Bd. I, S. 349. 1954.Google Scholar
  60. Gale, E. F.: The accumulation of amino-acids within staphylococcal cells. Symposia Soc. Exper. Biol. 1954.Google Scholar
  61. Granick, S.: The chemistry and functioning of the mammalian Erythrocyte. Blood 4, 404 (1949).PubMedGoogle Scholar
  62. Green, D. E.: Enzymes in metabolic sequences. In: Chemical pathways of metabolism, herausgeg. von D. M. Greenberg, Bd. I, S. 27. 1954.Google Scholar
  63. Green, D. E., and H. Beinert Xanthine oxidase a molybdoflavoprotein. Biochim. et Biophysica Acta 11, 599 (1953).Google Scholar
  64. (a).
    Greenberg, D. M.:Carbon catabolism of amino acids. In Chemical pathways of metabolism, herausgeg. von D. M. Greenberg, Bd. II, S. 47. New York 1954.Google Scholar
  65. (b).
    Greenberg, D. M.: Synthetic processes involving amino acids. In Chemical pathways of metabolism, herausgeg. von D. M.Greenberg, Bd. II, S. 113. New York 1954.Google Scholar
  66. (c).
    Greenberg, D. M.: Metabolism of Fulfur containing compounds. In: Chemical pathways of metabolism, herausgeg. von D. M. Greenberg, Bd. II, S. 149. New York 1954. Greenberg, G. R., L. Jänicke and M. Silverman: On the occurence of N-Formyltetrahydrofolic acid by enzymic formylation of Tetrahydrofolic acid and on the mechanism of this reaction. Biochim. et Biophysica Acta 17, 589 (1955).Google Scholar
  67. Gross, J., and R. Pitt-Rivers: Recent knowledge of the biochemistry of the thyroid gland. Vitamins a. Hormones 11, 159 (1953).Google Scholar
  68. Guggenheim, M.: Die biogenen Amine, 4. Aufl., S. 349. Basel u. New York 1951.Google Scholar
  69. Gunsalus, I. C.: Oxidative and transfer reactions of Lipoic acid. Federat. Proc. 13, 751 (1954).Google Scholar
  70. Gutman, A. B.: Some recent advances in the study of Uric acid metabolism an Gout. Bull. New York Acad. Med. 27, 144 (1951).Google Scholar
  71. Hahn, P. F.: The use of radioactive isotopes in the study of Iron and. Hemoglobin metabolism and the physiology of the Erythrocyte. Adv. Biol. a. Med. Physics 1, 288 (1948).Google Scholar
  72. Hayaiski, O., and A. Kornberg: Metabolism of Cytosine, Thymine, Uracil and Barbituric acid by bacterial enzymes. J. of Biol. Chem. 197, 717 (1952).Google Scholar
  73. Hegsted, D. M., N. Zamchek, C. F. Wang and M. B. Black: Studies on protein deficiency and temperature in relation to edema. Symposia on Nutrition 2, 238 (1950).Google Scholar
  74. Heidelberger, C., E P Abraham and S. Lepxovsky: Tryptophane metabolism. II. Concerning the mechanism of the mammalian conversion of Tryptophane into Nicotinic acid. J. of Biol. Chem. 179, 151 (1949).Google Scholar
  75. Heidelberger, C., M. E. Gullberg, A. F. Morgan and S. Lepkovsky: Tryptophane metabolism. I. Concerning the mechanism of the mammalian conversion of Tryptophane into Kynurenine, Kynurenic acid and Nicotinic acid. J. of Biol. Chem. 179, 143 (1949).Google Scholar
  76. Heppel, L. A.: Nucleotides and Nucleosides. In: Chemical pathways of metabolism, herausgeg. von D. M. Greenberg Bd. II, S. 263. New York 1954.Google Scholar
  77. Hehre, E. J.: Enzymic synthesis of Polysaccharides. Adv. Enzymol. 11, 297 (1951).Google Scholar
  78. Hess, G. H.: The conversion of Fructose-1C and Sorbitol-1-C14 to liver and muscle Glycogen in the rat. J. of Biol. Chem. 214, 373 (1955).Google Scholar
  79. Hoffmann-Ostenhof, O.: Enzymologie. Wien 1954.Google Scholar
  80. Holter, H.: Localization of enzymes in Cytoplasm. Adv. Enzymol.! 3, 1 (1952). HOLTZ, P.: Fermentative Aminbildung aus Aminosäuren. Erg. Physiol. 44, 230 (1941).Google Scholar
  81. Holzer, H.: Ober Fermentketten und ihre Bedeutung für die Regulation des Kohlenhydratstoffwechsels. 4. Kolloquium der Ges. für Physiologische Chemie 1953 in Mosbach. Berlin-Göttingen-Heidelberg 1953.Google Scholar
  82. Holzer, H., u. E. Holzer: Bestimmung stationärer Triosephosphat-Konzentrationen in lebender Hefe. Ein Beitrag zum Mechanismus des Pasteur-Effektes. Z. physiol. Chem. 292, 232 (1953).Google Scholar
  83. Horecker, B. L., and A. H. Mehler: Carbohydrate Metabolism. Annual Rev. Biochem. 24, 207 (1955).Google Scholar
  84. Horowitz, H. H., and C. G. King: Glucuronic acid as a precursor of Ascorbic acid in the albino rat. J. of Biol. Chem. 205, 815 (1953).Google Scholar
  85. Hubener, H. J.: Der Stoffwechsel von Nebennierenrinden-Hormonen und verwandten Steroiden. 5. Kolloquium der Ges. für Physiologische Chemie in Mosbach 1954, S. 212. Berlin-Göttingen-Heidelberg 1955.Google Scholar
  86. Huennekens, F. M., R. E. Basford and B. W. Gabrio: An oxydase for reduced diphosphopyridinnucleotid. J. of Biol. Chem. 213, 951 (1955).Google Scholar
  87. Huennekens, F. M. H. R. Mahler and J. Nordmann:. Studies on the cyclo-phorase system. XVI, XVII. Arch. of Biochem. 30, 66, 76 (1951).Google Scholar
  88. Jänicke, L.: Occurence of N10-Formyltetrahydrofolic acid and its general involvment in transformylation. Biochim. et Biophysica Acta 17, 588 (1955).Google Scholar
  89. Kalckar, H. M.: The enzymes of nucleoside metabolism. Fortschr. Chem. organ. Naturstoffe 9, 363 (1952).Google Scholar
  90. Kamin, H., and P. Handler: Effect of infusion of single amino acids upon excretion of other amino acids. Amer. J. Physiol. 164, 654 (1951).PubMedGoogle Scholar
  91. Kaplan, N. O.: Thermodynamics and mechanism of the Phosphate Bond. In: The Enzymes von J. B. Sumner u. K. MYRBÄCK, Bd. II/1, S. 55. New York 1951.Google Scholar
  92. Kisliuk, R. L., and W. Sakami: A study of the mechanism of Serine biosynthesis. J. of Biol. Chem. 214, 47 (1955).Google Scholar
  93. Knobloch, H.: Die Antivitamine. Erg. Enzymforsch. 11, 67 (1950).Google Scholar
  94. Kornberg, A., and W. E. Price jr.: Enzymatic esterification of cc-Glycerophosphate by long chain fatty acids. J. of Biol. Chem. 204, 345 (1953).Google Scholar
  95. Krebs, H. A.: The intermediary stages in the biological oxidation of Carbohydrates. Adv. Enzymol. 3, 191 (1943). The tricarboxylic cycle. In: Chemical pathways of metabolism, herausgeg. von D. M. Greenberg, Bd. I, S. 109. New York 1954.Google Scholar
  96. Küsna, J.: Grundzüge der Physiologie und Pathologie des Kohlenhydratstoffwechsels. In Handbuch der inneren Medizin, herausgeg. G. v. Bergmann, W. Frey u. H. Schwiegk, 4. Aufl., Bd. VII/2. Berlin-Göttingen-Heidelberg 1954.Google Scholar
  97. Landon, E. J., and D. M. Greenberg: J. of Biol. Chem. 209, 493 (1954).Google Scholar
  98. Lang, K.: Der intermediäre Stoffwechsel. Berlin-Göttingen-Heidelberg 1952. Die Biologie der Enzyme. 4. Kolloquium der Ges. für Physiologische Chemie 1953 in Mosbach. BerlinGöttingen-Heidelberg 1953.Google Scholar
  99. Lang, K.: Über die biologische Wirkung racemischer Aminosäuren. Colloque sur les acides aminés. Basel u. New York 1954.Google Scholar
  100. Lang, K.: Die Fermentsysteme der Zelle. Klin. Wschr. 1955, 300.Google Scholar
  101. Lang, K., u. O. R. Ranke: Stoffwechsel und Ernährung. BerlinGöttingen-Heidelberg 1950.Google Scholar
  102. Lang, K., u. G. Schmid: Über Prolinoxydase. Biochem. Z. 322, 1 (1951).PubMedGoogle Scholar
  103. Lang, K., u. G. Siebert: Die chemischen Leistungen der morphologischen Zellelemente. In Physiologische Chemie, Lehr-und Handbuch B. Flaschenträger u. E. Lehnartz, Bd. II/1 b, S. 1064. Berlin-Göttingen-Heidelberg 1954.Google Scholar
  104. Lanyar, F.: Über experimentelle Alkaptonurie der weißen Maus. Z. physiol. Chem. 275, 225 (1942).Google Scholar
  105. Lanyar, F.: Über experimentelle Alkaptonurie bei der weißen Ratte. Z. physiol. Chem. 278, 155 (1943).Google Scholar
  106. Leach, S. J.: The mechanism of enzymic oxidoreduction. Adv. Enzymol. 15, 1 (1954).Google Scholar
  107. Lemberg, R., and J. W. Legge: Hämatin compounds and bile pigments. New York 1949.Google Scholar
  108. Lerner, A. B.: Metabolism of Phenylalanine and Tyrosine. Adv. Enzymol. 14, 73 (1953).Google Scholar
  109. Lerner, A. B., and T. B. Fitzpatrick: Biochemistry of Melanin formation. Physiologic. Rev. 30, 91 (1950).Google Scholar
  110. Lettre, H., u. R. Tschesche: Über Sterine, Gallensäuren und verwandte Verbindungen, 2. Aufl., Bd. I. Stuttgart 1954.Google Scholar
  111. Leuthardt, F., E. Testa u. H. P.Wolf: Der enzymatische Abbau des Fruktose-l-phosphats in der Leber. Helvet. chim. Acta 36, 227 (1953).Google Scholar
  112. Levy, H., R. W. Jeanloz, R. P. Jacobsen, O. Hechter, V. Schenker and G. Pnncus: Chemical transformations of steroids by adrenal perfusion. J. of Biol. Chem. 211, 867 (1954).Google Scholar
  113. Lipmann, F.: Metabolic generation and utilization of Phosphate bond energy. Adv. Enzymol. 1, 99 (1941).Google Scholar
  114. Long, C.: Studies involving Enzymic phosphorylation. The Hexokinase activity of rat tissues. Biochemie. J. 50, 407 (1951).Google Scholar
  115. Lynen, F., and S. Ochoa: Enzymes of fatty acid metabolism. Biochim. et Biophysica Acta 12, 299 (1953).Google Scholar
  116. Madden, C. S., and G. H. Whipple: Plasma proteins: their source, production and utilization. Physiologic. Rev. 20, 194 (1940).Google Scholar
  117. Mahler, H. R.: Studies on the fatty acid oxidizing system of animal tissues. IV. The prosthetic group of Buturylcoenzyme A-dehydrogenase. J. of Biol. Chem. 206, 13 (1954).Google Scholar
  118. Mahler, H. R., and D. G. Elowe: Studies on metalloflavoproteins. II. The role of Iron in Diphosphopyridine Nucleotide Cytochrom cReductase. J. of Biol. Chem. 210, 165 (1954).Google Scholar
  119. Mahler, H. R., B. Mackler, D. E. Green and R. M. Bock: Studies on metalloflavoproteins. III. Aldehyde Oxidase: a molybdoflavoprotein. J. of Biol. Chem. 210, 465 (1954).Google Scholar
  120. Mann, T.: Metabolism of semen. Adv. Enzymol. 9, 329 (1949).Google Scholar
  121. Martius, C.: Die Wirkungsweise des Schilddrüsenhormons. 5. Kolloquium der Ges. für Physiologische Chemie 1954 in Mosbach. Berlin-GöttingenHeidelberg 1955. Der oxydative Endabbau. In Physiologische Chemie. Ein Lehr-und Handbuch von B. Flaschenträger u. E. Lehnartz, Bd. II/2, S. 1026. Berlin-GöttingenHeidelberg 1954.Google Scholar
  122. Martius, C., and F. Lynen: Probleme des Citronensäurecyclus. Adv. Enzymol. 10, 167 (1950).Google Scholar
  123. Mason, H. L., and W. W. Engstrom: The 17-Ketosteroides: their origin, determination and significance. Physiologic. Rev. 30, 321 (1950).Google Scholar
  124. Meiklejohn, A. P.: The physiology and biochemistry of ascorbic acid. Vitamins a Hormones 11, 62 (1953).Google Scholar
  125. Meister, A.: Transamination. Adv. Enzymol. 16, 185 (1955).Google Scholar
  126. Meyerhof, O.: New investigations on enzymatic glycolysis and phosphorylation. Experientia (Basel) 4, 169 (1948).Google Scholar
  127. Michaelis, L.: Theory of Oxidation-Reduction. In: The Enzymes von J. B. Sumner u. K. Myrbäck, Bd. II/1, S. 1. New York 1951.Google Scholar
  128. Moldave, K., and C. Heidelberger: Intramolecular heterogenity in nucleic acid biosynthesis. J. Amer. Chem. Soc. 76, 679 (1954).Google Scholar
  129. Muir, H. M., A. Neuberger and J. C. Peronne: Further isotopic studies on Haemoglobin formation in the rat and rabbit. Biochemie. J. 52, 87 (1952).Google Scholar
  130. Myrbäck, K., u. G. Neumüller: Stärke und Glykogen. Enzymatische Synthese und Hydrolyse. Erg. Enzymforsch. 12, 1 (1951).Google Scholar
  131. Nachmansohn, D., and I. B. Wilson: The enzymic synthesis and hydrolysis of Acetylcholine. Adv. Enzymol. 12, 259 (1951).Google Scholar
  132. Ochoa, S.: Biological mechanisms of carboxylation and decarboxylation. Physiologic. Rev. 31, 56 (1951).Google Scholar
  133. Peters jr., T.: Evidence of intermediate compounds in serum albumin synthesis. J. of Biol. Chem. 200, 461 (1953).Google Scholar
  134. Pincus, G., and K. V. Thiemann The Hormones, Bd. I. New York 1948.Google Scholar
  135. Racker, E.: Enzymatic synthesis and breakdown of Desoxyribosephosphate. J. of Biol. Chem. 196, 347 (1952).Google Scholar
  136. Racker, E.: Alternate Pathways of Glucose and Fructose metabolism. Adv. Enzymol. 15, 141 (1954).Google Scholar
  137. Ratner, S.: Urea synthesis and metabolism of Arginine and Citrulline. Adv. Enzymol. 15, 319 (1954).Google Scholar
  138. Renold, A. E., A. B. Hastings and F. B. Nesbett: Studies on carbohydrate metabolism in rat liver slices. III. Utilization of Glucose and Fructose by liver from normal and diabetic animals. J. of Biol. Chem. 209, 687 (1954).Google Scholar
  139. Riggs, T. R., B. Coyne and H. N. Christensen: Intensification of the cellular accumulation of aminoacide by Pyridoxal. Biochim. et Biophysica Acta 11, 303 (1953).Google Scholar
  140. Roche, J.: Quelques récentes acquisitions sur la biochimie de l’hormone thyroidienne. Expos. ann. Biochim. méd. 13, 145 (1951).Google Scholar
  141. Roche, J., O. Michel, R. Michel and J. Tata: Sur l’élimination de la Trijodthyronine et de laThyroxine et sur leur glycuronconjugation hépatique. Biochim. et Biophysica Acta 13, 471 (1954).Google Scholar
  142. Rose, W C: Amino acid requirements of man. Federat. Proc. 8, 546 (1949). Rothstein, M., and L. L. Miller: Conversion of Lysine to Pipecolic acid in the rat. J. of Biol. Chem. 211, 851 (1954).Google Scholar
  143. Rothstein, M., and L. L. Miller: Conversion of Lysine to Pipecolic acid in the rat. J. of Biol. Chem. 211, 851 (1954).Google Scholar
  144. Runnström, J.: The Cytoplasma, its structure, and role in metabolism, growth and differentiation. Modern trends in Physiology and Biochemistry, S. 47. New York 1952.Google Scholar
  145. Sable, H. Z.: Phosphorylation of Ribose and Adenosine in yeast extracts. Proc. Soc. Exper. Biol. a. Med. 75, 215 (1950).Google Scholar
  146. Samuels, L. T.: The metabolism of androgens by tissues. Recent Progr. in Hormone Res. 4, 65 (1949).Google Scholar
  147. Schachter, D., and J. V. Taggart: Glycine N-Acylase: purification and properties. J. of Biol. Chem. 208, 263 (1954).Google Scholar
  148. Schettler, G.: Neues vom Cholesterinstoffwechsel. Erg. inn. Med., N. F. 3, 299 (1952).Google Scholar
  149. Sohoenheimer, R.: The dynamic state of body constituents. Cambridge, Mass. 1941. - Schreier, K.: Die angeborenen Störungen des Eiweißstoffwechsels. In Handbuch der inneren Medizin, herausgeg. von G. V. Bergmann, W. Frey u. H. Schwiegk, 4. Aufl., Bd. VII/2, S. 812. Berlin-Göttingen-Heidelberg 1954.Google Scholar
  150. Schulman, M. P.: Purines and Pyrimidines. In: Chemical pathways of metabolism,herausgeg. D. M. Greenberg Bd. II,S. 223. New York 1954.Google Scholar
  151. Sebrell, W. H., and R. S. Harris: The Vitamins, Bd. II, S. 1 u. S. 268. New York 1954.Google Scholar
  152. Shemin, D.: Some aspects of the biosynthesis of amino acids. Cold Spring Harbor Symp. Quant. Biol. 14, 161 (1950).Google Scholar
  153. Shemin, D., C. S. Rusell and T. Abramsky: The Succinat-Glycine cycle. I. The mechanism of Pyrrole synthesis. J. of Biol. Chem. 215, 613 (1955).Google Scholar
  154. Siedel, W.: Gallenfarbstoffe. In Physiologische Chemie, Lehr-und Handbuch von B. Flaschenträger u. E. Lehnartz, Bd. I, S. 909. Berlin-Göttingen-Heidelberg 1950. Der Stoffwechsel der Porphyrine. In Physiologische Chemie, Lehr-And Handbuch von B. Flaschenträger u. E. Lehnartz, Bd. II/1 b, S. 996. Berlin-Göttingen-Heidelberg 1954.Google Scholar
  155. Singer, T. P., and E. B. Kearney: Chemistry, metabolism, and scope of action of the Pyridine Nucleotide Coenzymes. Adv. Enzymol. 15, 79 (1954).Google Scholar
  156. Sprinson, D. B., and D. Rittenberg: The metabolic activity of the a-, ß-, and y-Hydrogen atoms of L-Leucine and the a,Hydrogen of Glycine. J. of Biol. Chem. 184, 405 (1950).Google Scholar
  157. Stadie, W. C.: Current concepts of the action of Insuline. Physiologic. Rev. 34, 52 (1954).Google Scholar
  158. Stary, Z.: Stoffwechsel der Phosphatide. In Physiologische Chemie, Lehr-und Handbuch von B. Flaschenträger u. E. Lehnartz, Bd. II/i b, S. 1. Berlin-Göttingen-Heidelberg 1954.Google Scholar
  159. Staudinger, H. J.: Biosynthese der Steroidhormone. 5. Kclloquium der Ges. für Physiologische Chemie 1954 in Mosbach, S. 192. Berlin-Göttingen-Heidelberg 1955.Google Scholar
  160. Stetten, M. R., and D. W. Stetten jr.: Glycogen regeneration in vivo. J. of Biol. Chem. 213, 723 (1955).Google Scholar
  161. Stumpf, P. K.: Glycolysis. In: Chemical pathways of metabolism, herausgeg. von D. M. Greenberg, Bd. I, S. 67. New York 1954.Google Scholar
  162. Theorell, H.: Heme-linked groups and mode of action of some Hemoproteins. Adv. Enzymol. 7, 265 (1947). - Flavin containing Enzymes. In: The Enzymes von K. MYRBÄCK u. J. B. Sumner, Bd. II/1, S. 335. New York 1951.Google Scholar
  163. Thomas, K.: Fütterungsversuche mit synthetischen Fettsäuren. Gegenwartsprobleme der Ernährungsforschung, S. 125. Basel 1953.Google Scholar
  164. Twombly, G. H.: The synthesis and metabolism of radioactively-labeled Steroids. Vitamins a. Hormones 9, 237 (1951).Google Scholar
  165. Vannotti, A.: Eisenstoffwechsel. In H. Schwiegk, Künstliche radioaktive Isotope in Physiologie, Diagnostik und Therapie, S. 465. Berlin-Göttingen-Heidelberg 1953. - Porphyrins. London 1954.Google Scholar
  166. Verkade, P. E., J. Van Der Lee u. A. J. S. Van Alphen: Untersuchungen über den Fettstoffwechsel. VIII. Fütterungsversuche an Hunden mit den Natrium-salzen normaler, gesättigter Dicarbonsäuren. Z. physiol. Chem. 250, 47 (1937).Google Scholar
  167. Vigneaud, V. Du: A trail of research in Sulfur chemistry and metabolism. Ithaca, N. Y. 1952.Google Scholar
  168. Waelsch, H.: Glutamic acid and cerebral function. Adv. Protein Chem. 6, 299 (1951). Certain aspects of intermediary metabolism of Glutamine, Asparagine and Glutathione. Adv. Enzymol. 13, 237 (1952).Google Scholar
  169. Warburg, O.: Schwermetalle als Wirkungsgruppen von Fermenten. Berlin 1946. Wasserstoff übertragende Fermente. Berlin 1948.Google Scholar
  170. Waymouth, C.: The nutrition of animal cells. Internat. Rev. Cytology 3, 1 (1954).Google Scholar
  171. Weil-Malherbe, H.: Significance of glutamic acid for metabolism of nervous tissue. Physiologic. Rev. 30, 549 (1950). Der Energiestoffwechsel des Nervengewebes und sein Zusammenhang mit der Funktion. 3. Kolloquium der Ges. für Physiologische Chemie in Mosbach 1952. BerlinGöttingen-Heidelberg 1952.Google Scholar
  172. Weinhouse, S.: Newer pathways of Carbohydrate Metabolism. Diabetes 4, 173 (1955).PubMedGoogle Scholar
  173. Werle, E.: Aminosäuren-Decarboxylasen. Z. Vitamin-, Hormon-u. Fermentforsch. 1 504 (1947/48).Google Scholar
  174. Werle, E.: Aminosäure-Decarboxylasen. Angew. Chem. 63, 550 (1951).Google Scholar
  175. Wettstein, A.: Advances in the field of adrenal cortical hormones. Experientia (Basel) 10, 397 (1954).Google Scholar
  176. Whipple, G. H., F. S. Rosscheit-Robbins and L. L. Miller: Blood protein regeneration and interrelation. Ann. New York Acad. Sci. 47, 317 (1946).Google Scholar
  177. Widmer, C., H. W. Clark, H. A. Neufeld and E. Stotz: Cytochrome components of the soluble SC-factor preparation. J. of Biol. Chem. 210, 861 (1954).Google Scholar
  178. Williams, R. J., R. E. Eakin, E. Beerstecher jr. and W. Shive: The biochemistry of B Vitamins. New York 1950.Google Scholar
  179. Wiss, O.: Stoffwechsel der Eiweißstoffe und Aminosäuren. In Physiologische Chemie, Lehr-und Handbuch von B. Flaschenträger U. E. Lehnartz, Bd. 1I/2, S. 909. Berlin-Göttingen-Heidelberg 1954.Google Scholar
  180. Woolley, D. W.: Biological antagonisms between structurally related compounds. Adv. Enzymol. 6, 129 (1946).Google Scholar
  181. Wright, L. D.: Antimetabolites of nucleid acid metabolism. Vitamins a. Hormones 9, 131 (1951).Google Scholar
  182. Wyngaarden, J. B., and D. W. Stetten jr.: Uricolysis in normal man. J. of Biol. Chem. 203, 9 (1953).Google Scholar
  183. Zabin, I., and J. F. Mead: The biosynthesis of Sphingosine. J. of Biol. Chem. 211, 87 (1954).Google Scholar
  184. Zamecnik, P. C.: The use of labeled amino acids in the study of the protein metabolism of normal and malignant tissues: a review. Cancer Res. 10, 659 (1950).PubMedGoogle Scholar
  185. Zeile, K.: Blutfarbstoffe, Häminfermente und Zellhämine. In Physiologische Chemie, Lehr-und Handbuch von B. Flaschenträger U. E. Lehnartz, Bd. I, S. 849. Berlin-GöttingenHeidelberg 1951.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1957

Authors and Affiliations

  • Konrad Lang
    • 1
  1. 1.MainzDeutschland

Personalised recommendations