Skip to main content

Statistical Methods

  • Chapter
Data Compression
  • 259 Accesses

Abstract

The methods discussed so far have one common feature, they assign fixed-size codes to the symbols (characters or pixels) they operate on. In contrast, statistical methods use variable-size codes, with the shorter codes assigned to symbols or groups of symbols that appear more often in the data (have a higher probability of occurrence). Designers and implementors of variable-size codes have to deal with the two problems of (1) assigning codes that can be decoded unambiguously and (2) assigning codes with the minimum average size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Chaitin, Gregory J. (1977) “Algorithmic Information Theory,” IBM Journal of Research and Development, 21:350–359, July.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaitin, Gregory J. (1997) The Limits of Mathematics, Singapore, Springer-Verlag.

    Google Scholar 

  • Zurek, Wojciech (1989) “Thermodynamic Cost of Computation, Algorithmic Complexity, and the Information Metric,” Nature, 341(6238):119–124, Sept 14.

    Article  Google Scholar 

  • Elias, P. (1975) “Universal Codeword Sets and Representations of the Integers,” IEEE Transactions on Information Theory IT 21(2):194–203, March.

    Article  MathSciNet  MATH  Google Scholar 

  • Golomb, S. W. (1966) “Run-Length Encodings,” IEEE Transactions on Information Theory IT 12(3): 399–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Huffman, David (1952) “A Method for the Construction of Minimum Redundancy Codes,” Proceedings of the IRE 40(9):1098–1101.

    Article  Google Scholar 

  • Hirschberg, D., and D. Lelewer (1990) “Efficient Decoding of Prefix Codes,” Communications of the ACM 33(4):449–459.

    Article  Google Scholar 

  • Sieminski, A. (1988) “Fast Decoding of the Huffman Codes,” Information Processing Letters 26(5):237–241.

    Article  Google Scholar 

  • Knuth, D. E. (1985) “Dynamic Huffman Coding,” Journal of Algorithms 6:163–180.

    Article  MathSciNet  MATH  Google Scholar 

  • Vitter, Jeffrey S. (1987) “Design and Analysis of Dynamic Huffman Codes,” Journal of the ACM 34(4):825–845, October.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, K. L., et al., (1987) “Binary-Image-Manipulation Algorithm in the Image View Facility,” IBM Journal of Research and Development 31(1): 16–31, January.

    Article  Google Scholar 

  • Hunter, R., and A. H. Robinson (1980) “International Digital Facsimile Coding Standards,” Proceedings of the IEEE 68(7):854–867, July.

    Article  Google Scholar 

  • Marking, Michael P. (1990) “Decoding Group 3 Images,” The C Users Journal pp. 45–54, June.

    Google Scholar 

  • McConnell, Kenneth R. (1992) FAX: Digital Facsimile Technology and Applications, Norwood, MA, Artech House.

    Google Scholar 

  • Moffat, Alistair, Radford Neal, and Ian H. Witten (1998) “Arithmetic Coding Revisited,” ACM Transactions on Information Systems, 16(3):256–294, July.

    Article  Google Scholar 

  • Witten, Ian H., Radford M. Neal, and John G. Cleary (1987) “Arithmetic Coding for Data Compression,” Communications of the ACM, 30(6):520–540.

    Article  Google Scholar 

  • Cleary, J. G. and I. H. Witten (1984) “Data Compression Using Adaptive Coding and Partial String Matching,” IEEE Transactions on Communications COM 32(4):396–402, April.

    Article  Google Scholar 

  • Moffat, A. (1990) “Implementing the PPM Data Compression Scheme,” IEEE Transactions on Communications COM 38(11):1917–1921, November.

    Article  Google Scholar 

  • Wright, E. V. (1939) Gadsby, Los Angeles, Wetzel. Reprinted by University Microfilms, Ann Arbor, 1991.

    Google Scholar 

  • Krichevsky, R. E. and V. K. Trofimov (1981) “The Performance of Universal Coding,” IEEE Transactions on Information Theory, IT-27:199–207, March.

    Article  MathSciNet  MATH  Google Scholar 

  • Volf, Paul A. J. (1997) “A Context-Tree Weighting Algorithm for Text Generating Sources,” in Storer, James A. (ed.), DCC’97: Data Compression Conference, Los Alamitos, CA, IEEE Computer Society Press, pp. 132–139, (Poster).

    Google Scholar 

  • Willems, F. M. J., Y. M. Shtarkov and Tj. J. Tjalkens (1995) “The Context-Tree Weighting Method: Basic Properties,” IEEE Transactions on Information Theory, IT-41:653–664, May.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Salomon, D. (2000). Statistical Methods. In: Data Compression. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86092-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86092-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78086-1

  • Online ISBN: 978-3-642-86092-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics