Das Cytoplasma pp 309-388 | Cite as

Der Mineralstoffwechsel der Zelle

Eisen, Calcium und Phosphor
  • Gottwalt Christian Hirsch
Part of the Handbuch der Allgemeinen Pathologie book series (PATHOLOGIE, volume 2 / 1)

Zusammenfassung

Die Lebewesen entnehmen der Außenwelt zahlreiche Atome und verbinden diese miteinander zum Stoffbestand und zum Getriebe. Bisher konnte etwa die Hälfte aller bekannten Atome in dem Plasma der Tiere und Pflanzen wiedergefunden werden1. Die Tabelle 1 zeigt, daß die Elemente in sehr verschiedenen Prozentsätzen vorkommen: die am meisten vorkommenden Elemente, welche sich in allen Lebewesen finden, haben ein verhältnismäßig niedriges Atomgewicht: sie sind relativ leicht auswechselbar und bilden unter anderem auch Gase, lösliche Salze usw.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abbatt, J. D.: Phosphorus. In SCHWIEGK u. Mitarbeiter, Radioaktive Isotope, S. 275 bis 295. Heidelberg: Springer 1953.Google Scholar
  2. Abelson, P. H., and W. R. DuvY: Radioactive sodium permeability and exchange in frog eggs. Biol. Bull. 96, 205 (1949).PubMedGoogle Scholar
  3. Aboim, A. N.: L’organe interrénal des sélaciens. Etude cytologique, histochimique et histophysiologique. Arch. Portugaises Sci. Biol. 7, 89 (1944).Google Scholar
  4. Abood>, L. G., R. W. Gerard and J. Banks: Substrate and enzyme distribution in cells of the nervous system. Amer. J. Physiol. 168, 728 (1952).PubMedGoogle Scholar
  5. Ada, G. L.: Phospholipin metabolism in rabbit-liver cytoplasm. Biochemie. J. 45, 422 (1949).Google Scholar
  6. Adamstone, F. B.: A device for the rapid fixation of fresh frozen tissue sections. Stain Technol. 26, 157 (1951).PubMedGoogle Scholar
  7. Addis, T., and W. LEw: The restoration of lost organ tissue. The rate and degree of restoration. J. of Exper. Med. 71, 325 (1940).Google Scholar
  8. Adolph, E. F.: Physical properties of protoplasm. Ann Rev. Physiol. 3, 185 (1941).Google Scholar
  9. Abbatt, J. D.: Physiological regulations. Lancaster, Pa. 1943.Google Scholar
  10. Albert, S., R. Heard, C P. Leblond and J. C. SAFFRAN: Distribution and metabolism of iodo-a-estradiol labeled with radioactive iodine. J. of Biol. Chem. 177, 247 (1948).Google Scholar
  11. Albrjght, F., and E. C. Reifenstein: The Parathyroid Glands and Metabolic Bone Disease. Baltimore: Williams & Wilkins Company 1948.Google Scholar
  12. Allara, E.: Sur la microincinération d’organes riches en substances lipoïdes par la méthode de Schultz-Brauns. C. r. Soc. Biol. Paris 126, 1136 (1937).Google Scholar
  13. Abbatt, J. D.: Laspect spodographique de quelques variétés de tissus conjonctifs. C. r. Soc. Biol. Paris 126, 736 (1937).Google Scholar
  14. Abbatt, J. D.: Distribuzione delle sostanze inorganiche in alcune varietà di tessuto connettivo studiata con il metodo della microincinerazione. Boll. Soc. Ital. Biol. Sperim. 13, 99 (1938).Google Scholar
  15. Abbatt, J. D.: Dasselbe in: Bull. Histol. appl. 15, 220 (1938).Google Scholar
  16. Abbatt, J. D.: Ricerche spodografiche sulla mammella di cavia nelle varie fasi del suo ciclo funzionale. Bull. Histol. appl. 16, 157 (1939).Google Scholar
  17. Abbatt, J. D.: Hcontenuto minerale delle formazioni gustative della lingua umana nelle varie età della vita. Boll. Soc. ital. Biol. sper. 15, 1187 (1940).Google Scholar
  18. Abbatt, J. D.: Ricerche sull’organo del gusto dell’uomo. 2. Le sostanze minerali delle formazioni gustative nelle varie eta della vita. Arch. ital. Anat. e Embriol. 46, 96 (1941).Google Scholar
  19. Abbatt, J. D.: Alcuni problemi di istofisiologia della ghiandola sottomascellare studiati con il metodo della microincinerazione. Boll. Soc. ital. Biol. sper. 23, 1 (1947).Google Scholar
  20. Abbatt, J. D.: Quelques problèmes d’histophysiologie des glandes salivaires, étudiés avec la méthode de la microincinération. Bull. Histol. appl. 16, 27 (1949).Google Scholar
  21. Abbatt, J. D.: Hproblema delle membrane basilare. Arch. ital. Anat. 55, 163 (1948).Google Scholar
  22. Abbatt, J. D.: Sulla natura e sull’origine delle membrane basali. Monit. zool. ital., Suppl. Atti Soc. ital. Anat. 58, 134 (1949).Google Scholar
  23. Allard, C, and A. Cantero: Adenosinetriphosphatase study during rat liver damage. Activity of rat liver during regeneration after partial hepatectomy. Canad. J. Med. Sci. 30, 295 (1952).Google Scholar
  24. Allen, R. J. L.: The estimation of phosphorus. Biochemie. J. 34, 358 (1936).Google Scholar
  25. Albert, M.: Observ. on the histophysiology of the adrenal gland of the golden hamster. Endocrinology 46, 166 (1950).Google Scholar
  26. Alsterberg, G.: Phosphatide im Nervensystem. Z. Zellforsch. 31, 364 (1941).Google Scholar
  27. Alt, H. W.: Iron deficiency in pregnant rats. Amer. J. Dis. Childr. 56, 975 (1938).Google Scholar
  28. Altland, P. D.: Cytology of the hypophysis of the fence lizard. Anat. Rec. 74, 109 (1939).Google Scholar
  29. Altman, K. I.: Methylene carbon atom of glycine into rabbit bone marrow fats. J. of Biol. Chem. 177, 985 (1949).Google Scholar
  30. Altman, K. I., G. W. CASARETT, T. R. NOONAN and K. SALOMON: Methylene carbon atom of glycine labeled with C14 in rats. Arch. of Biochem. 23, 131 (1949).Google Scholar
  31. Alt-Man, K. I., L. L. Miller and J. E. Richmond: The carbon skeleton of lysine in the biosynthesis of hemoglobin. Arch. of Biochem. 29, 447 (1950).Google Scholar
  32. Altman, K. I., R. N. Watman and K. Salomon: Incorporation of a-C14-acetate into the stroma of the erythrocyte. Arch. of Biochem. a. Biophysics 33, 168 (1951).Google Scholar
  33. Amann, A.: Über die Resorption von Ferrosalzen, speziell des Ferrobicarbonats. Arch. exper. Path. u. Pharmakol. 194, 277 (1940).Google Scholar
  34. Anderson, H. D., K. B. MCDONOUGH and C. A. ELVEHJEM: Relation of the dietary calcium-phosphorus ratio to iron assimilation. J. Labor. a. Clin. Med. 25, 464 (1940).Google Scholar
  35. Anderson, J. D.: Staining reactions of thyroid colloid. Univ. Colorado Stud. Gen., Ser. A 26, 16 (1940).Google Scholar
  36. Andresen, N., C. C.Apman-Andresen and H. Holter: The distribution of food in amoeba cytoplasm studied by means of autoradiography. Exper. Cell. Res. 1, 139 (1950).Google Scholar
  37. Abbatt, J. D.: Auto-radiographic studies on the amoeba Chaos chaos. C. r. Tray. Labor. Carlsberg, Sér. chim. 28, 189 (1952).Google Scholar
  38. Andresen, N., C. C.Apman-Andresen, H. Holter and C. V. ROBINSON: Quantitative autoradiographie studies on the amoeba Chaos chaos. C. r. Tray. Labor. Carlsberg, Sér. chim. 28, 499 (1953).Google Scholar
  39. Andrus, M., and M. X. Zarrow: Amount of alkaline phosphatase in the oviduet of folic acid deficient chicks. Proc. Soc. Exper. Biol. a. Med. 72, 714 (1949).Google Scholar
  40. Anfinsen, C. B., H. LowRY and A. B. H.STINGS: The application of the freezing-drying technique to retinal histochemistry. J. Cellul. a. Comp. Physiol. 20, 231 (1942).Google Scholar
  41. Angeli, R.: Microdetection of P in plant cells. Riv. Biol. 10, 702 (1933).Google Scholar
  42. Dangelo, S. A.: Histo-physiologic aspects of pituitary-thyroid gland interaction in the goitrous Guineapig. Anat. Rec. 112, 21 (1952).Google Scholar
  43. Annau, E., and A Manginelli Alk. phosphatase activity and nuclear changes, liver, induced by diethanolamine. Nature (Lond.) 166, 816 (1950).Google Scholar
  44. Abbatt, J. D.: Absorption and excretion of iron. Lancet 1939, 843.Google Scholar
  45. Ardenne, M. v.: Elektronen-Übermikroskopie. Physik, Technik, Ergebnisse. Berlin: Springer 1940.Google Scholar
  46. Armstrong, W. D., and J. Schubert: Studies on the turnover of carbon in calcified tissues. Metabolic. Interrelations, S 77. New York 1949.Google Scholar
  47. Armstrong, W. D., and S. H. ZBARSKY: Excretion and distribution of C14 during and following continuous intraperitoneal injection of C14 as sodium carbonate. Metabolic Interrelations, S. 67. New York 1949.Google Scholar
  48. Artom, C.: Some data on the distribution of individual phospholipids in rat tissues and in human plasma. J. of Biol. Chem. 157, 595 (1945).Google Scholar
  49. Arvy, L., et M. GABE: Mise en evidence simultanée du fer figuré et de la phosphatase alcaline sur coupes à la paraffine. Bull. Histol. appl. 26, 189 (1949).Google Scholar
  50. Abbatt, J. D.: Sidérose splenique dans des états d’hypothyroidie expérimentale. Bull. Soc. zool. France 75, 160 (1950).Google Scholar
  51. Abbatt, J. D.: Sidérose splenique dans des états d’hypothyroide expérimentale. Bull. Soc. zool. France 75, 160 (1950).Google Scholar
  52. Abbatt, J. D.: Mécanisme d’apparition de la sidérose, chez le rat traité par la thiourée. C. r. Soc. Biol. Paris 144, 487 (1950).Google Scholar
  53. Abbatt, J. D.: Données histochimiques sur la repartition de la phosphatase alcaline chez quelques sauropsidés. Proc. Kon. Nederl. Akad. Y. Wetensch; Ser, C 55, 359 (1952).Google Scholar
  54. Abbatt, J. D.: Sidérose splénique d’hypothyroide expérimentale. Bull. Soc. zool. France 75, 160 (1950).Google Scholar
  55. Arzoag, J. P.: Histochem. reaction, aldehydes. Stain Technol. 25, 187 (1950).Google Scholar
  56. Ashworth, C. T.: Intralobular regeneration of liver cells in man. Amer. J. Path. 23, 269 (1947).PubMedGoogle Scholar
  57. Astrup, T., and E. HENRICKSEN: Formation of waite deposits in tissue cultures in the presence of organic phosphates. Exper. Cell. Res. 6, 151 (1954).Google Scholar
  58. Atkinson, WM. B., and H. ELFIMAN: Mobilization of the alkaline phosphatase in the uterus of the mouse by estrogen Endocrinology 40, 30 (1947).Google Scholar
  59. Atkinson, W. B., and E. T. ENGLE: Studies in endometrial alkaline phosphatase during the human menstrual cycle and in the hormone-treated monkey. Endocrinology 40, 327 (1947).PubMedGoogle Scholar
  60. Austoni, M. E., and D. M. GREENBERG: Studies in iron metabolism with the aid of its artificial radioactive isotope. The absorption, excretion and distribution of iron in the rat on normal and iron-deficient diets. J. of Biol. Chem. 134, 27 (1940).Google Scholar
  61. Axelrod, D.: The radioautographic technique. Univ. of California Contract W-7405 eng. 48A of the US. AEC, 1947.Google Scholar
  62. Axel-Rod, D. J., and J. G. Hamilton Radioautographic studies of distribution of lewisite and mustard gas in skin and eye tissues. Amer. J. of Path. 23, 349 (1947).Google Scholar
  63. Baginsky, S.: Mikroveraschung. Z. wiss. Mikrosk. 55, 241 (1938).Google Scholar
  64. Baginsky, S.: The reconstitution of collagen fibrils as revealed by electronmicroscopy. Exper. Cell Res. 1, 603 (1950).Google Scholar
  65. Baginsky, S.: Ergebnisse elektronenmikroskopischer Untersuchungen des kollagenen und elastischen Gewebes. Arch. f. Dermat. 193, 518 (1951).Google Scholar
  66. Baker, J. R.: Cytological Technique, 2. Aufl. London: Methuen & Co. 1945.Google Scholar
  67. Baginsky, S.: Preparation of tissues. Bourne’s Cytology. 1951.Google Scholar
  68. Baker, S. L., E. C. Butterworth and F. A. Langley: The calcium and nitrogen content of human bone tissue cleaned by microdissection. Biochemie. J. 40, 391 (1946).Google Scholar
  69. Baldwin, E.: Dynamic Aspects of Biochemistry. Cambridge: Univ. Press 1949.Google Scholar
  70. Baldwin, E., and W. H. Yudkin: Annelid phosphagen. Proc. Roy. Soc. Lond. Ser. B 136, 614 (1950).Google Scholar
  71. Balfour, W. M., P. F. HAHN, W. F. Pommerenke and G. H. WHIPPLE: Fe metabolism. J. of Exper. Med. 76, 15 (1942).Google Scholar
  72. Barba, F. G.: Lactivité des phosphatases de la glande thyroïdea. Arch. portug. Sci. biol. 10, 81 (1949).Google Scholar
  73. Baginsky, S.: Histofisiologia da Tiroideia. Lisboa 1950. BARER, R.: Advances in microscopy: I. The reflecting microscope. Brit. Sci. News 1, 66 (1948).Google Scholar
  74. Baginsky, S.: Aspects of ultra-violet and infra-red microspectrography withe the Burch reflecting microscope. Faraday Soc. Disc. 1950, 369.Google Scholar
  75. Baginsky, S.: Learning about the Invisible. (Ultra-Violet and Infra-Red Photomicography.) Photographic. J. B 90, 83 (1950).Google Scholar
  76. Baginsky, S.: The technique of ultra-violet absorption spectroscopy with the Burch reflecting microscope. Biochim. et Biophysica Acta 6, 123 (1950).Google Scholar
  77. Baginsky, S.: Cytological techniques. Microscopy. Bourne’s Cytol. and Cell Physiol., 2. Aufl. 1951.Google Scholar
  78. Bargmann. W.: Histologie und mikroskopische Anatomie des Menschen, Bd. 1. Stuttgart 1948.Google Scholar
  79. Bari-Gozzi, C.: Sostanse minerale e proteini nei chromosomi delle ghiandole salivari di Chironomus. Z. Zellforsch. 26, 462 (1937).Google Scholar
  80. Barigozzi, C., J. Brachet, T. Caspersson, G Delle-Piane, P. C. Koller e S. Ranzi: Acidi nucleici, proteine e differenziamento normale e patologico. Torino 1949.Google Scholar
  81. Barnum, C. P., and R. A. Huseby: The intracellular heterogeneity of pentose nucleic acid as evidenced by the incorporation of radiophosphorus. Arch. of Biochem. 29, 7 (1950).Google Scholar
  82. Barrett, A. M.: A method for staining sections of bone marrow. J. of Path. 56, 133 (1944).Google Scholar
  83. Barron, G. P., P. B. Pearson and S. O. Brown: Magnesium deficiency in the sexually mature rat. Proc. Soc. Exper. Biol. a Med. 69, 128 (1948); 70, 220 (1949).Google Scholar
  84. Barth, L. G.: Studies on the metabolism of development. J. of Exper. Zool. 103, 463 (1946).Google Scholar
  85. Barth, L. G., and L. Jaeger: Phosphorylation in the frog’s egg. Physiologic. Zool. 20, 133 (1947).Google Scholar
  86. Barthelmez, G W., and S. H. Bensley: „Acid phosphatase“ reactions in peripheral nerves. Science (Lancaster, Pa.) 106, 639 (1947).Google Scholar
  87. Bartter, F. C., P. Fourman and A. P. Forbes: Factors influencing potassium, phosphorus and sodium excretion. Metabol. Interrelations. New York 1949.Google Scholar
  88. BATTAGLIA, B.: Fosfatasi alcalina ed acidi nucleici nei tessuti germinali femminili e nell’organo di Bidder di anfibi. Pubbl. Staz. zool. Napoli 22, 79 (1949).Google Scholar
  89. Bauer, W., J. C. AUB and F. ALBRIGHT: Studies of calcium and phosphorus metabolism. 5. A study of the bone trabeculae as a readily available reserve supply of calcium. J. of Exper. Med. 49, 145 (1929).Google Scholar
  90. Bayley, S. T.: Autoradiography of single cells. Nature (Lond.) 160, 193 (1947).Google Scholar
  91. Beadle, L. C.: Osmotic regulation and the fauna of inland waters. Biol. Rev. Cambridge 18, 172 (1943).Google Scholar
  92. Beams, H. W.: The Microtomists vade-mecum. Philadelphia: Blakiston Son & Co. 1950.Google Scholar
  93. Beams, H. W., and R. L. KING: Fragmentation of amphibian erythrocytes in the ultracentrifuge. J. of Morph. 77, 63 (1945).Google Scholar
  94. Becks, H., C. W. Asling, M. E. Simpson, H. M. Evans and C. H. LI: Ossification at the distal end of the humerus in the female rat. Amer. J. Anat. 82, 203 (1948).PubMedGoogle Scholar
  95. Becks, H., and W. J. Furuta: The effect of magnesium-deficient diets on oral and dental structures. 3. Changes in the dentine and pulp tissue. Amer. J. Orthodont. 28, 1–14 (1942).Google Scholar
  96. Beeson, W. M., D. W. BoLIN, C. W. HICKMAN and R. T. JoaNsoN: The phosphorus requirement for growing and fattening beef steers. Idaho Agr. Exper. Sta. Bull. 240 (1941).Google Scholar
  97. Berenblum, I., and E. Chain An improved method for the calorimetric determination of phosphate. Biochemie. J. 32, 295 (1938). BEGINSKY, S.: Mikroveraschung. Z. Mikrosk. 55, 241 (1938).Google Scholar
  98. Beinert, H., H. Maier-Leibnitz, K. R. Reissmann, E. O. Richey and P. Matthews: Studies on the incorporation of injected cytochrome C into tissue ce’.a. 2. Injection of radioactive cytochrome C into normal rats. USA F School of aviation med., Texas Project Number 21, Report 2. 1950.Google Scholar
  99. Belanger, L. F.: Method for routine detection of radiophosphates and other radioactive compounds in tissues. Anat. Rec. 107, 149 (1950).PubMedGoogle Scholar
  100. Baginsky, S.: Phosphatase activity in polarized light following glycerophate incubation. Proc. Soc. Exper. Biol. a. Med. 77, 266 (1951).Google Scholar
  101. Belanger, L. F., and C. P. LEBLOND: A method of locating radioactive elements in tissues by covering histological sections with a photographic emulsion. Endocrinology 39, 8 (1946).PubMedGoogle Scholar
  102. Baginsky, S.: Mineralization of growing tooth as shown by radiophosphorus autographs. Proc. Soc. exper. Biol. a. Med. 73, 390 (1950).Google Scholar
  103. Belfer, S., P. Koran, H. Eder and H. C. Bradley: The autolysis of invertebrate tissue. J. of Biol. Chem. 147, 345 (1943).Google Scholar
  104. Bellion, B. e F. de MICHELIS: L’energia atomica e sue applicazione biologiche. Introduzione all’impiego degli isotopi in biologia e medicina. Torino: Rosenberg-Sellier 1951.Google Scholar
  105. Benjamin. J. A., J. G. Wilson and A. D. Leahy Quantitative microchemical spectrographic and citric acid analysis. J. of Urol. 54, 516 (1945).Google Scholar
  106. Bennett, H. S.: Some problems in microspectrophotometry with polarized light. Diachronism in muscle mercaptides. Labor. Investigation 1, 96 (1952).Google Scholar
  107. Bennett, H. S., and K. R. PORTER: An electron microscope study of sectioned breast muscle of the domestic fowl. Amer. J. Anat. 93, 61 (1953).PubMedGoogle Scholar
  108. Bensley, R. R.: The chemistry of cytoplasm. Biol. Symposia (Lancaster, Pa.) 10, 323 (1943).Google Scholar
  109. Bensley, R. R., and S. H. Bensley: Handbook of Hist. and Cytol. Technique. Chicago 1941.Google Scholar
  110. Berg, G. G., and A. G. Karczmar: Distribution of alkaline phosphatase in regenerating forelimbs of larval urodeles. Anat. Rec. 106, 9 (1950).Google Scholar
  111. Berg H.: Vorkommen und Geochemie der mineralischen Rohstoffe. Leipzig 1929.Google Scholar
  112. Berggren, H.: Mineral metabolism in dental hard tissues; tracer experiments in vivo with 32P and 24Na. Acta radiol. (Stockh.) 27, 248 (1946).Google Scholar
  113. Berlin, N. I., T. G. Hennessey and J. Gartland: Sternal marrow puncture; the dilution with peripheral blood as determined by PS2 labeled red blood cells. J. Labor. a. Clin. Med. 36, 23 (1950).Google Scholar
  114. Berlin, N. I., and J. H. Lawrence: The changes in the bone marrow differential in chronic leukemia treated with P32 and Y90. Acta med. Scand. (Stockh.) 140, 99 (1951).Google Scholar
  115. Bern, H. A.: Urinal and genital tract phosphatase of the male dutch rabbit. Amer. J. Physiol. 156, 396 (1949).PubMedGoogle Scholar
  116. Baginsky, S.: The distribution of alkaline phosphatase in the genital tract of male mammals. Anat. Rec. 104, 361 (1949).Google Scholar
  117. Baginsky, S.: Effect of estrogen on genital phosphatase activities in the male guinea pig. Anat. Rec. 108 (1950).Google Scholar
  118. Baginsky, S.: Epithelial metaplasia and alkaline phosphatase. Anat. Rec. 102, 269 (1951).Google Scholar
  119. Baginsky, S.: Estrogen and alkaline phosphatase activity in the genital tract of the male mouse. Endocrinology 48, 25 (1951).Google Scholar
  120. Bertalanffy, L. v.: Theoretische Biologie, Bd. 2. Stoffwechsel und Wachstum. Bern 1951.Google Scholar
  121. Berthet, J., L. Berthet, F. Appelmans and C. DE DuvE: The nature of the linkage between acid phosphatase and mitochondria in rat-liver tissue. Biochemic. J. 50, 182 (1951).Google Scholar
  122. Berthet, J., and C. DE DUVE: The existence of a mitochondria-linked, enzymically inactive form of acid phosphatase in rat-liver tissue. Biochemic. J. 50, 174 (1951).Google Scholar
  123. Bertrand, D.: Le vanadium dans les ascidies. C. r. Acad. Sci. Paris 215, 477 (1942).Google Scholar
  124. Baginsky, S.: Le molybdène et cuivre dans la série animale Bull. Soc. Chim. biol. (Paris) 25, 197 (1943).Google Scholar
  125. BESSIS, M.: Studies in electron microscopy of blood cells. J. Hematology 5, 1038 (1950).Google Scholar
  126. Baginsky, S.: Etudes au microscope électronique des leucocytes normaux et leucemiques. Acta Union internat. contre Cancer 7, 646 (1951).Google Scholar
  127. Bessis, M., and M. BRIcKA: Nouvelles études sur les cellules sanguines au microscope électronique. Arch. Anat. microsc. et Morphol. expér. 38, 190 (1949).Google Scholar
  128. Bethke, R. M., C. H. Kicx and W. WILDER: Effect of calcium-phosphorus relation on growth, calcification and blood composition of the rat. J. of Biol. Chem. 98, 389 (1932).Google Scholar
  129. Bevelander, G., and M. H. AMLER Radioactive phosphate absorption by dentin and enamel. J. Dent. Res. 24, 45 (1945).Google Scholar
  130. BEVELANDER, G., and P. BENZER: Calcification in marine molluscs. Biol. Bull. 94, 176 (1948).PubMedGoogle Scholar
  131. Bevelander, G., and P. L. Johnson Alkaline phosphatase in amelogenesis. Anat. Rec. 104, 125 (1949).PubMedGoogle Scholar
  132. Baginsky, S.: A histochemical study of the development of membrane bone. Anat. Rec. 108, 22 (1950).Google Scholar
  133. Biddulpr, C., R. K. Meyer and W. H. Mcsran: Adenosine triphosphatase activity and weight of corpora lutea during the reproductive cycle of the rat. Proc. Soc. Exper. Biol. a. Med. 62, 36 (1946).Google Scholar
  134. Biedermann, W.: Physiologie der Stütz-und Skelettsubstanzen. In WINTERSTEINS Handbuch der Vergleichenden Physiologie, Bd. 3, Abt. 1. Jena 1913.Google Scholar
  135. Biesele, J. J., and 1VI. M. Biesele: Alkaline phosphatase in mouse skin under methylcholanthrene treatment. Cancer Res. 4, 751 (1951).Google Scholar
  136. Bisson, P.: Ovocyte chez Gammarus. Bull. Soc. zool. France 75, 24 (1950). BLACK, D. A. K: Sodium metabolism. Oxford: Blackwell 1952. BLACK, D. A. K., and J. F. POWELL: Biochemic. J. 36, 110 (1937).Google Scholar
  137. Bladergroen, W.: Physiologische Chemie in Medizin und Biologie, 2. Aufl. Basel 1949.Google Scholar
  138. Blanck, E.: Handbuch der Bodenkunde, Bd. 6. Berlin 1930.Google Scholar
  139. Block, W. D., O. H. Buchanan and R. H. Freyberg: Metabolism, toxicity and manner of action of gold compounds in the treatment of arthritis. 2. A comparative study of the distribution and excretion of gold following the intramuscular injection of 5 different gold compounds. J. of Pharmacol. 73, 200 (1941).Google Scholar
  140. Bloom, G., and H. ENGSTRÖM: The structure of the epithelial surface in the olfactory region. Exper. Cell Res. 3, 699 (1952).Google Scholar
  141. Bloom, W.: Histopathology of irradiation from external and internal sources. New York: McGraw-Hill 1948.Google Scholar
  142. Baginsky, S.: The deposition of C14 in bone. Science (Lancaster, Pa.) 105 (1947).Google Scholar
  143. Baginsky, S.: Deposition of C14 in the metaphysis of long bones of young rats. Anat. Rec. 103 (1949). BLOOM, W., and M. BLOOM: Calcification and ossification. Calcification of developing bones in embryonic and newborn rats. Anat. Rec. 78, 497 (1940).Google Scholar
  144. Blum, G.: Phosphatase and the repair of fractures. Lancet 1944, 75.Google Scholar
  145. BODIAN, D., and D. DzIEwIATxowsKI: The disposition of radioactive phosphorus in normal, as compared with regenerating and degenerating nervous tissue. J. Cellul. a. Comp. Physiol. 35, 155 (1950).Google Scholar
  146. Bodian, D., and R. C. MELLORS: Phosphatase activity in chromatolytic nerve cells. Proc. Soc. Exper. Biol. a. Med. 55, 243 (1944).Google Scholar
  147. Baginsky, S.: Decrease of phosphocreatine in regenerating neurons. J. of Biol. Chem. 167, 655 (1947).Google Scholar
  148. Boelter, M. D. D., and D. M. Greenberg: Severe calcium deficiency in growing rats. 1. Symptoms and pathology. 2. Changes in chemical composition. J. Nutrit. 21, 61, 75 (1941).Google Scholar
  149. Bogoroch, R.: Detection of radioelements in histological slides by coating with stripping emulsion.Google Scholar
  150. The strip-coating technique. Stain Technol. (1951).Google Scholar
  151. Theoretical and technical study of autography as a histological method for localization of radioactive elements. Medical Science Diss. McGill University, April 1950.Google Scholar
  152. DU Bois, K. P., K. W. Cochran and M. Mazur Inhibition of phosphatases. Science (Lancaster, Pa.) 110, 420 (1949).Google Scholar
  153. Bolliger, A.: Non-keratinous constituents of hair. Med. J.Austral. 1949, 536.Google Scholar
  154. Borell, U., and A.ÖRSTRÖM: Metabolism in different parts of the brain, espicially in the epiphysis, measured with radioactive phosphorus. Acta physiol. scand. (Stockh.) 10, 231 (1945).Google Scholar
  155. The turnover of phosphate in the pineal body compared with that in other parts of the brain. Biochemic. J. 41, 398 (1947).Google Scholar
  156. Born, H. J., H. A. TIMOFÉEFF-RESSOWSKY u. P. M. WOLF: Versuche über die Verteilung des Mangans im tierischen Organismus mit Mn“ als Indicator. Naturwiss. 31, 246 (1943).Google Scholar
  157. Bobbies, B. v.: Die Übermikroskopie. Untersuchung ihrer Grenzen und Abriß ihrer Ergebnisse. Aulendorf: Editio Cantor 1949.Google Scholar
  158. Boström, H., and E. Odeblad: Autoradiographic observations on the incorporation of S35 labeled sodium sulfate in the rabbit fetus. Anat. Rec. 115 505 (1953):Google Scholar
  159. Bounhol, J. J.: Le déterminisme des métamorphoses chez les Amphibiens. Paris: Hermann & Cie. 1942.Google Scholar
  160. Bourne, G.: The effect of ascorbic acid (Vitamin C), calcium ascorbate, and calcium gluconate on the regeneration of bone in rats. Quart. J. Exper. Physiol. 31, 319 (1942).Google Scholar
  161. Baginsky, S.: The effect of graded doses of vitamin C upon the regeneration of bone in guinea pigs on ascorbutic diet. J. of Physiol. 101, 327 (1942).Google Scholar
  162. Baginsky, S.: The distribution of alkaline phosphatase in various tissues. Quart. J. Exper. Physiol. 32, 1 (1944).Google Scholar
  163. Bourne, G. H. u. Mitarb.: Cytology and Cell Physiology, 2. Aufl. Oxford: University Press 1951.Google Scholar
  164. Bowen, V. T.: Barium metabolism in hornets studied by means of radioisotopes. Trans. New York Acad. Sci. 2, 68 (1949).Google Scholar
  165. Baginsky, S.: The mineral metabolism of insects. Brookhaven Conference Report (1948), S. 104. Manganese metabolism of social vespidae. J. of Exper. zool. 115, 175 (1950).Google Scholar
  166. BAGINSKY, S.: The uptake and distribution of barium and lanthanum in larvae of Drosophila repleta. J. of Exper. Zool. 118, 509 (1951).Google Scholar
  167. Boyd, G. A.: Physical principles and techniques of autoradiographs. J. Biol. Photogr. Assoc. 16, 65 (1947).PubMedGoogle Scholar
  168. Boyd, G. A., G. W. Casarett, K. I. Altman, T. R. Noonan and K. Salomon: Autoradiographs of C14 incorporated in individual blood cells. Science (Lancaster, Pa.) 108, 529 (1948).Google Scholar
  169. Boyd, G. A. and F. A. BOARD: A preliminary report on histochemography. Science (Lancaster, Pa.) 110, 586 (1949).Google Scholar
  170. Boyd, G. A., and H. Levi: Carbon 14 beta track autoradiography. Science (Lancaster, Pa.) 111, 58 (1950).Google Scholar
  171. Boyd, G. A., and W. F. Neumann: J. of Biol. Chem. 193, 243 (1951).Google Scholar
  172. Boyd, G. A., and A. Williams Stripping film technics for histological autoradiographs. Proc. Soc. Exper. Biol. a. Med. 69, 225 (1948).Google Scholar
  173. Brachet, J.: Chemical Embryology. Transi by Barth. New York: Interscience Publ. 1950.Google Scholar
  174. Brachet, J., and R. JEENER: Recherches sur le rôle de la phosphatase alcaline des noyaux. Biochim. et Biophysica Acta 2, 423 (1948).Google Scholar
  175. Bradfield, J. R. G.: Alkaline phosphatase in invertebrate sites of protein secretion. Natur (Lond.) 157, 187 (1946).Google Scholar
  176. Baginsky, S.: The localization of enzymes in cells. Biol. Rev. 25, 113 (1950).Google Scholar
  177. Baginsky, S.: Phosphatases and nucleid acids in silk glands: Cytochemical aspects of fibrillar protein secretion. Quart. J. Microsc. Sci. 92, 87 (1951).Google Scholar
  178. Brandenberger, E., u. H. R. ScHINZ: Helvet. med. Acta 12, Suppl. 16 (1945).Google Scholar
  179. Brandt, TH. V.: Der Jahrescyclus im Stoffbestand der Weinbergschnecke. Z. vergl. Physiol. 14, 200 (1931); 18, 562 (1933).Google Scholar
  180. Baginsky, S.: Stoffwechsel der Protozoen. Erg. Biol. 12, 16 (1935).Google Scholar
  181. Branson, H., and G. HANS$oROUGH: The quantitative theory of autoradiography illustrated through experiments with P92 in the chick embryo. Science (Lancaster, Pa.) 108, 327 (1948).Google Scholar
  182. Bredemann, G.: Biochemie und Physiologie des Fluors. Berlin 1951.Google Scholar
  183. Bretschneider, L. H.: Anwendung und Ergebnisse der Elektronenmikroskopie Mikroskopie (Wien) 3, 12, 160 (1948); 5, 257 (1950).Google Scholar
  184. Baginsky, S.: The fine structure of protoplasm. Survey Biol. Progr. 2, 222 (1952).Google Scholar
  185. Bretschneider, L. H. u. P. F. ELBERS: Elektronenmikroskopische Zellanalyse nach der Gefriertrockenmethode. Proc., Kon. nederl. Akad. Wetensch Amsterdam, Ser. C 55, 675 (1952).Google Scholar
  186. Brink jr., F. B., D. W. Bronk and M. G. Larrabel Chemical excitation of nerve. Ann. New York Acad. Sci. 47, 457 (1946).Google Scholar
  187. Briwa, K. E., and H. C. Sherman: The calcium content of the normal growing body at a given age. J. Nutrit. 21, 155 (1941).Google Scholar
  188. Brody, S.: Bioenergetics and growth. New York: Reinhold Publ. Comp. 1945.Google Scholar
  189. Brooks, S. C.: Penetration of radioactive isotopes, Pat, Na24 and K42 into Niella. J. Cellul. a. Comp. Physiol. 38, 83 (1951).Google Scholar
  190. Brooks, S. C., and M. M. BROOKS: Permeability of living cells. Berlin: Gebrüder Bornträger 1941.Google Scholar
  191. Baginsky, S.: The permeability of living cells. Ann Arbor: J. W. Edwards 1944.Google Scholar
  192. Brooks, S. C., and E. L. CHAMBERS • Penetration of radioactive phosphate into the eggs of Strongylocentrotus purpuratus, S. franciscanus and BAGINSKY, S.: Urechis caupo. Biol. Bull. Mar. Biol. Labor Wood’s Hole 95, 262 (1948).Google Scholar
  193. Browne, M. J., M. W. PITTS and R. F. PITTS: Alkaline phosphatase activity in kidneys of glomerular and aglomerular marine teleosts. Biol. Bull. 99, 152 (1950).PubMedGoogle Scholar
  194. Bruce, H. M., and R. K. CALLOW: Cereals and rickets, the rôle of inositolhexaphosphoric acid. Biochemic. J. 28, 517 (1934).Google Scholar
  195. BRÜCKMANN, G., and S. G. ZONDEK: Iron, copper and manganese in human organs at various ages. Biochemie. J. 33, 1845 (1939).Google Scholar
  196. Buckner, G. D., and J. H. MARTIN: J. of Biol. Chem. 41, 195 (1920).Google Scholar
  197. Buckner, G. D., J. H. MARTIN and A. M. PETER: Amer. J. Physiol. 71, 349, 543; 72, 253 (1925).Google Scholar
  198. BÜCHNER, FR.: Allgemeine Pathologie. Pathologie als Biologie und als Beitrag zur Lehre vom Menschen. München u. Berlin 1950.Google Scholar
  199. Bullard jr., R. W.: Alkaline phosphatase and metastatic liver disease. Surgery 19, 379 (1946).PubMedGoogle Scholar
  200. Bulltard, H., J. Grundland et M. Maillet• Détection histochimique des phosphatides cellulaires. C. r. Soc. Biol. Paris 144, 192 (1950).Google Scholar
  201. Bulliard, H., J. Grundland et A. MOUSSA: Détection du phosphore des phosphatides surrénaliens par le radio-phosphore. C. r. Acad. Sci. Paris 207, 745 (1938).Google Scholar
  202. Bunting, H.: The histochemical detection of iron in tissues. Stain Technol. 24, 109 (1949).PubMedGoogle Scholar
  203. Baginsky, S.: Kidney alkaline phosphatase of rats following alloxan-induced diabetes and acute hypo-and hyperglycemia. Proc. Soc. Exper. Biol. a. Med. 67, 370 (1948).Google Scholar
  204. Burns, C. M., and N. Henderson: The mineral constituents of bone. 3. The effect of prolonged parathormone injections on the composition of the bones of puppies with varying calcium intakes. Biochemie. J. 40, 501 (1946).Google Scholar
  205. Burns, J., and E. Copeland • Chloride excretion in the head region of Fundulus heteroclitus. Biol. Bull. 99, 381 (1950).PubMedGoogle Scholar
  206. Burril, M W, S Freeman and A. JOY: Sodium, potassium, and chloride excretion of human subjects exposed to a simulated altitude of 18, 000 feet. J. of Biol. Chem. 157, 297 (1945).Google Scholar
  207. Burtox, E. F., and W. H. KOHL: The Electron Microscope. An Introduction to its fundamental Principles and Applications, 2. Aufl. New York: Reinhold 1946.Google Scholar
  208. Butler, G. C.: Use of tracers. Rothmann’s Uses of at. Energy. New York: Harper-Brothers 1949.Google Scholar
  209. Butler, J. A. V.: Progress in Biophysics and biophysical Chemistry. New York 1950.Google Scholar
  210. Caflisch, J. V. TRINS: Beiträge zur normalen Histologie und Entwicklungsgeschichte des Dentine der Rattenmolaren. Diss. Univ. Zürich 1939.Google Scholar
  211. Cali, A.: Particolari aspetti morfologico e topografici dell’attività fosfatasica acida a p5, rilevabili con l’incubazione nel substrato a tempi gradualmente crescenti. Riv. Anat. Pat. 6, 607 (1953).PubMedGoogle Scholar
  212. Caflisch, J. V. TRINS: Ricerche istochimiche sul comportamento dell’attività glicerofosfatasica alcalina nel fegato di conigli irradiati al cranio. Ren. Atti Acad. Sci. med. e chirur. 107 (1953).Google Scholar
  213. Campbell, H. L., and H. C. Sherman: Effect of increasing calcium content of diet upon rate of growth and length of life of unmated females. J. Nutrit. 26, 323 (1943).Google Scholar
  214. Campbell, W. W., and D. M. GREEN-BERG: Calcium resorption. Proc. Nat. Acad. Sci. U.S.A. 26, 176 (1940).Google Scholar
  215. Cannon, W. B.: The Wisdom of the Body. New York: W. W. Norton 1939.Google Scholar
  216. Caflisch, J. V. Trins: Caflisch, J. V. Trins, Carere-Comes, O.: New methods for the histochemical demonstration of potassium, and selective staining of tissues rich in potassium. Z. wiss. Mikrosk. 55, 1–6 (1938).Google Scholar
  217. Carritt, J., R. FRYSEELL, J KLEIN-SCHMIDT, R KLEINSCHMIDT, W. A. LANGHAM, A. SAN PIETRO, R. SCHAFFER and B. SCHNAP: J. of Biol. Chem. 171, 273 (1947).Google Scholar
  218. Cartwright, G. E., M. A. Lauritsen, S. Humphreys, P. J. Jones, J. M. Merril and M. M. Wintrobe: J. Clin. Invest. 25, 81 (1946).Google Scholar
  219. Caflisch, J. V. Trins, Casella, C., e M. Reggiani: Istospettrografia di fluorescenza. Arch. di Biol. 60, 207 (1949).Google Scholar
  220. Caflisch, J. V. Trins, Caspersson, T. O.: Cell Growth and Cell Function. New York: W. W. Norton 1950.Google Scholar
  221. Caflisch, J. V. Trins: Some recent developments in ultramicrospectrography. Genetica (’s-Gravenhage ) 1951.Google Scholar
  222. Caspersson, T., and J. Gersh: Total protein and organic iodine in the colloid and cells of single follicles of the thyroid gland. Anat. Rec. 78, 303 (1940).Google Scholar
  223. Caspersson, T., E. Jacobsson and F. Lomakka• An automatic scanning device for ultramicrospectrography. Exper. Cell. Res. 2, 301 (1951).Google Scholar
  224. Caspersson, T., H. LANDSTRÖM-HYDEN und L. AQUILONIUS: Cytoplasmanukleotide in eiweißproduzierenden Drüsenzellen. Chromosoma 2, 111 (1941).Google Scholar
  225. Caspersson, T., u. B. Thorell: Der endozelluläre Eiweiß-und Nukleinsäurestoffwechsel in embryonalem Gewebe. Chromosoma 2, 132 (1941).Google Scholar
  226. Chaikoff, J. L.: The application of labeling agents to the study of phospholipid metabolism. Physiologic. Rev. 22, 391 (1942).Google Scholar
  227. Caflisch, J. V. Trins, Chaikoff, J. L., and D. B. ZILVERSMIT: Adv. Biol. a. Med. Physics 1, 322 (1948).Google Scholar
  228. Chang, K. T.: Calcification in the fetuses of normal and Ancon sheep. Anat. Rec. 105, 723 (1949).PubMedGoogle Scholar
  229. CHAÌGUS, G. W., J L CHAIXOFF and S. J. RUBEN: Radioactive phosphorus as an indicator of phospholipid metabolism. 4. The phospholipid metabolism of the brain. J. of Biol. Chem. 126, 493 (1938).Google Scholar
  230. CHAPMAN-ANDRESEN, C., and C. V. ROBINSON: The assay of 14C-labelled amoebae in vivo. C. r. Labor. Carlsberg, Sér. chim. 28, 343 (1953).Google Scholar
  231. Caflisch, J. V. Trins, Chargaff, E.: Coagulation. J. of Biol. Chem. 160, 351 (1945).Google Scholar
  232. Caflisch, J. V. TRINS: J. of Biol. Chem. 142, 505 (1942).Google Scholar
  233. Charles, E., and L. Hogben: The serum calcium and magnesium level in the ovarian cycle of the laying hen. Quart. J. Exper. Physiol. 23, 343 (1933).Google Scholar
  234. Cùvremont, M., et H. Firket• Phosphatase, cellules cultivées. C. r. Soc. Biol. Paris 143, 731 (1949).Google Scholar
  235. Caflisch, J. V. Trins: Etude histochimique de l’action du beryllium sur la mitose en culture de tissus. (Phosphatase alcaline et acides nucléiques.) C. r. Soc. Biol. Bruxelles 29, 2 (1951).Google Scholar
  236. Caflisch, J. V. Trins, Action du béryllium en culture de tissus. Effets sur la croissance et la mitose. Phosphatase. Archives de Biol. 63, 411, 515 (1952).Google Scholar
  237. Chiewitz, O., and G. v. Hevesy: Radioactive indicators in the study of phosphorus metabolism in rats. Nature (Lond.) 136, 754 (1935).Google Scholar
  238. Chlopin, N. G.: Eisen. Z. Zellforsch. 11, 316 (1930).Google Scholar
  239. CLARKE, F. W., and W. C. WHEELER: The inorganic constituents of marine invertebrates. Prof. Pap. U.S. Geol. Surv. 110, 124 (1922).Google Scholar
  240. Clarkson, E. M., and M. Maizels • Distribution of phosphatases in human erythrocytes. J. of Physiol. 116, 112 (1952).Google Scholar
  241. Cloetens, R.: Identification de deux phosphatases “alcalines” dans les organes animaux. Enzymologia 6, 46 (1939).Google Scholar
  242. Caflisch, J. V. Trins, Zur Konstitution der alkalischenPhosphatasen. Naturwiss. 28, 252 (1940).Google Scholar
  243. Cloi Tta, M., u. H. FISCHER: tJber die Wirkung der Kationen Ca, M., Sr, Ba, K und Na bei intrazerebraler Injektion. (Beitr. z. Genese von Schlaf und Erregung.) Arch. exper. Path. u. Pharmakol. 158, 254 (1930).Google Scholar
  244. Caflisch, J. V. Trins, Cloetta, M., H. Fischer u. M. R. v. D. LOEFF: Die Biochemie von Schlaf und Erregung, mit besonderer Berücksichtigung der CAFLISCH, J. V. TRINS: Bedeutung der Kationen. Arch. exper. Path. u. Pharmakol. 174, 589 (1934).Google Scholar
  245. Caflisch, J. V. Trins: Die Verteilung und die Wirkung des Magnesiums im Organismus und deren Beeinflussung durch Calcium. Arch. exper. Pathol. u. Pharmakol. 200, 6 (1942).Google Scholar
  246. Cohn, E.J.: Experientia (Basel) 3, 125 (1947).Google Scholar
  247. Corn, W. E., and D. M. Greenberg: Studies in mineral metabolism with the aid of artificial radioactive isotopes. 1. Absorption, distribution and excretion of phosphorus. J. of Biol. Chem. 123, 185 (1938).Google Scholar
  248. Comar, C. L., and J. C. Diggers: Secretion of radioactive calcium in the hen’s egg. Science (Lancaster, Pa.) 109, 282 (1949).Google Scholar
  249. Conly, S. S., J. O. CRIDER and J. E. THOMAS: Bicarbonate concentration of pancreatic juice during experimental acidosis. Federat. Proc. 9 (1950).Google Scholar
  250. Caflisch, J. V. Trins, Cook, S. F., K. G. Scorr and P. ABELSON: The deposition of radio phosphorus in tissues of growing chicks.Google Scholar
  251. Proc. Nat. Acad. Sci. U.S.A. 23, 528 (1937).Google Scholar
  252. Corr, D. H., D. J. Axelrod and J. G. Hamilton: Deposition of radioactive metals in bone as potential health hazard. Amer. J. Roentgenol. 58, 10 (1947).Google Scholar
  253. Corr, D. H., and D. M. Greenberg: Abs. and excretion of iron. J. of Biol. Chem. 164, 377, 389 (1946).Google Scholar
  254. Coprie, G.: Le rôle des ions calcium dans la transmission neuromusculaire. Arch. internat. Physiol. 54, 323 (1946).Google Scholar
  255. Cori, C. F.: Phosphorylation of glycogen and glucose. Biol. Symposia 5, 131 (1941).Google Scholar
  256. Cornbleet, T.: Calcium, potassium, sodium and magnesium metabolism ad the skin. Urologie Rev. 45, 3 (1941).Google Scholar
  257. Corner, G. W.: Alkaline phosphatase in the ovarian follicles and corpora lutea. Science (Lancaster, Pa.) 100, 270 (1944).Google Scholar
  258. Cosslett, V. E.: Introduction to Electron Optics. Oxford: Clarendon Press 1946.Google Scholar
  259. Couceiro, A.: Aspects of the utilization of phosphorus by some organs of mice treated with P32. Rev. brasil. Biol. 4, 87 (1944).Google Scholar
  260. Courrier, R., J. Roche, G. H. Deltour, M. Marois, R. MICHEL et F. MOREL: Sur l’excrétion mammaire d’iode radioactif après administration diodures ou d’iodocaséine marqués. C. r. Soc. Biol. Paris 143, 599 (1949).Google Scholar
  261. Cowdry, E. V.: Microscopic Technique in Biology and Medicine, 3. Aufl. Baltimore: Williams & Wilkens Co. 1953.Google Scholar
  262. Cram, D. M., and R. J. Rossiter: Phosphatase of rabbit polymorphnuclear leucocytes. Canad. J. Res., Sect. E. Med. Sci. 27, 290 (1949).Google Scholar
  263. Caflisch, J. V. Trins, Crane, R. K.: Distribution of phosphorus in the unfertilized egg of Arbacia. Biol. Bull. 93, 192 (1947).Google Scholar
  264. Cremer, H. D., u. J. FÜRTH: Untersuchung der Organe. In HOPPE-SEYLER U. THIERFELDER, V. S. 447–665. 1953.Google Scholar
  265. Cremer, H. D., u. W. HERR • Calcium und Strontium. In H. ScHwwIEGK, Radioaktive Isotope. Heidelberg: Springer 1953.Google Scholar
  266. Caflisch, J. V. Trins, Cremer, H. D., W. Herr u. H. SPÄTH: Ca-Resorption und Einlagerung. Biochem. Z. 322, 212 (1951).Google Scholar
  267. Cretin, A.: De quelques méthodes des recherches du phosphate et de la chaux dans les tissues. Thèse de méd. Paris 1923.Google Scholar
  268. Caflisch, J. V. TRINS: Sur un nouveau réactif du calcium applicable aux recherches histologiques. Bull. Histol. appl. 1, 64 (1924).Google Scholar
  269. Caflisch, J. V. TRINS: Note sur la fixation histologique de quelques sels de métaux lourds. Bull. Assoc. Anat. 24 (1929).Google Scholar
  270. Cruz, W. O., P. F. HAHN and W. F. BALE: Amer. J. Physiol. 135, 595 (1942).Google Scholar
  271. Caflisch, J. V. Trins, Cunningham, I. J.: Some biochemical and physiological aspects of copper in animal nutrition. Biochemie. J. 25, 1267 (1931).Google Scholar
  272. Dale, E. B., E. D. Richert, T. A. Redfield and J. D. Kurbatov: The gamma-radiation of Ba131. Physic. Rev. 80, 763 (1950).Google Scholar
  273. Dallemagne, M. J.: Annual Rev. Physiol. 12, 101 (1950).PubMedGoogle Scholar
  274. Daly, M. M., and A. E. MIRSKI: Formation of protein in the pancreas. J. Gen. Physiol. 36, 243 (1952).PubMedGoogle Scholar
  275. Dangeard, P.: Cytologie végétale et Cytologie générale. Paris: Paul Lechevalier 1947.Google Scholar
  276. Daniel, E. P., and E. M. Hewston: Vanadium a consideration of its possible biological rôle. Amer. J. Physiol. 136, 772 (1942).Google Scholar
  277. Danielli, J. F.: Cell Physiology and Pharmacology. New York u. Amsterdam 1950.Google Scholar
  278. Dale, E. B., E. D. Richert, T. A. Redfield and J. D. KURBATOV: Physical and physicochemical studies of cells, Bournes Cytology 2. Aufl. 1951.Google Scholar
  279. Dale, E. B., E. D. Richert, T. A. Redfield and J. D. Kurbatov: A critical study of technique for determining the cytological position of alkaline phosphatase. J. of Exper. Biol. 22, 110 (1946). Cytochemistry, a critical approach. New York: Wiley a. Sons 1954.Google Scholar
  280. Davies, J.: Anatomical and histochemical observations on the excretory organs and placenta of the mammalian embryo. Anat. Rec. 112, 141 (1952).Google Scholar
  281. Dawson, R. M. C., and D. Richter: The phosphorus metabolism of the brain. Proc. Roy. Soc. Lond. 137, 252 (1950).Google Scholar
  282. Day, H. G., and E. V. McCoLLUM: Mineral metabolism, growth and symptomology of rats on a diet extremely deficient in phosphorus. J. of Biol. Chem. 130, 269 (1939).Google Scholar
  283. Day, M. F.: The distribution of alkaline phosphatase in insects. Austral. J. Sci. Res., Ser. B 2, 31 (1949).Google Scholar
  284. Dale, E. B., E. D. Richert, T. A. Redfield and J. D. Kurbatov, Deane, H. W.: A cytochemical survey of phosphatases in mammalian liver, pancreas, and salivary glands. Amer. J. Anat. 80, 321 (1947).Google Scholar
  285. Dehen-Grenson, M. DE: Biochim. et Biophysica Acta 10, 480 (1953).Google Scholar
  286. Delory, G. E.: Determinations of phosphate in the presence of interfering substances. Biochemie. J. 32, 1161 (1938).Google Scholar
  287. Dempsey, E. W., and H. W. Deane: The cytochemical localization, substrate specificity and pu optima of phosphatases in the duodenum of the mouse. J. Cellul. a. Comp. Physiol. 27, 159 (1946).Google Scholar
  288. Dempsey, E. W., R. O. GREEP and HELEN WENDLER-DEANE: Alkaline phosphatases in tissues of the rat after hypophysectomy or gonadectomy and after replacement therapy. Endocrinology 44, 88 (1940).Google Scholar
  289. Dempsey, E. W., and M. Singer: Observations on the chemical cytology of the thyroid gland at different functional stages. Endocrinology 38, 270 (1946).PubMedGoogle Scholar
  290. Dempsey, E. W., and G. B. WisLocxi: Human placenta. Endocrinology 35, 409 (1944).Google Scholar
  291. Dale, E. B., E. D. Richert, T. A. Redfield and J. D. KURBATOV: Histochemical contributions to physiology. Physiologic. Rev. 26 (1946).Google Scholar
  292. Dale, E. B., E. D. Richert, T. A. Redfield and J. D. KURBATOV: Further observations on the distribution of phosphatases in mammalian placentas. Amer. J. Anat. 80, 1 (1947).Google Scholar
  293. Denis, W., and R. C. Corley: A study of the effect of excessive calcium ingestion on the calcium content of the blood. J. of Biol. Chem. 66, 609 (1925).Google Scholar
  294. Deobald, H. J., J. B. Christiansen, E. B. Hart and J. G. Halpin • The relationship between blood calcium and blood phosphorus and the effect of variations in the calcium content of the ration on ovulation and blood calcium changes in the laying pullet. Poultry Sci. 17, 114 (1938).Google Scholar
  295. Desaive, P.: Etude des modalités réactionelles du tissu de soutien de l’ovaire adulte en liaison avec les variations de composition et de forme de l’appareil folliculaire. Archives de Biol. 60, 409 (1949).Google Scholar
  296. Desclaux, P., et A. Soulairac: Activité phosphatique des cellules insulaires du pancréas du rat. Archives d’Anat. 34, 169 (1952).Google Scholar
  297. Diamond, M., and J. P. Weinmann: The Enamel of human Teeth. An inquiry into the formation of normal and hypoplastic enamel matrix and its calcification. New York: Columbia Univ. Press 1940.Google Scholar
  298. Diemair, W.: Milch. In HOPPE-SEYELR U. TRIERFELDER, S. 666. 1953.Google Scholar
  299. Djabri, A.: Effet de l’acide l’ascorbique (vitamine C) sur l’ostéogénèse et la mineralisation des os du cobaye normal et scorbutique. Thèse Univ. Lausanne 1940.Google Scholar
  300. Dosson, E. L., J. W. Gofman, H. B. Jones, I. S. Kelly and I. A. Walker* The controlled selective localization of radioisotopes of yttrium, zirconium and columbium in the bone marrow, liver and spleen. J. Labor. a. Clin. Med. 34, 305 (1949).Google Scholar
  301. Dobyns, B. M., and B. Lennon: Study of histopathology and physiologic function of thyroid tumors using iodine and radioautography. J. Clin. Endocrin. 8, 732 (1948).Google Scholar
  302. Dobyns, B. M., B. Skanze and F. Maloof: Method for preoperative estimation of function in thyroid tumors; its significance in diagnosis and treatment. J. Clin. Endocrin. 9, 1171 (1949).Google Scholar
  303. Doniak, I., A. Howard and S. R. PELC: Autoradiography. Progress in Biophysics, ed. Butler and Randall. New York: Acad. Press 1953.Google Scholar
  304. Dotterweich, H., u. H. Franke: Die Ausscheidung von Calciumkarbonat, Strontiumkarbonat und. Kalziumphosphat in den Kalkdrüsen von Lumbricus. Z. vergl. Physiol. 23, 42 (1936).Google Scholar
  305. Dougherty, E. C., and J. H. Lawrence: Isotopes in clinical and experimental medicine. California Med. 69, 58 (1948).Google Scholar
  306. Doyle, W. L.: Quantitative evaluation of Gomori histochemical preparations. Science (Lancaster, Pa.) 111, 64 (1950).Google Scholar
  307. Draper, M. H., and A. J. HODGE: Microincineration, electro microscope. Nature (Lond.) 163, 576 (1949).Google Scholar
  308. Drilion, A., et R. G. BUSNEL: Recherches sur les phosphatases d’Insectes et en particulier des tubes de Malpighi et du tube digestif. Bull. Soc. zool. France 70, 40 (1945).Google Scholar
  309. Dry, D. S.: Improved methods for the demonstration of mitochondria, glycogen, fat and iron in animal cells. Amer. J. Sci. 41, 298 (1945).Google Scholar
  310. Dubach, R., C. V. Moore and V. Minnicr: J. Labor. a. Clin. Med. 31, 1201 (1946).Google Scholar
  311. Dudley, R. A., and B. M. Dobyns: Use of autoradiographs in quantitative determination of radiation dosages from Ca45 in bone. Science (Lancaster, Pa.) 109, 327 (1949).Google Scholar
  312. DzIEwr&TKowsKI, D., and D. Bodian: Phosphorus metabolism of the mouse brain as indicated by the use of radio-phosphorus. J. Cellul. a. Comp. Physiol. 35, 141 (1950).Google Scholar
  313. Ebel, J.-P., R. Vendrely et R. Turasne: Action de la pénicilline sur le métabolisme phosphoré et azoté du Proteus vulgaris. C. r. Soc. Biol. Paris 144, 1413, 1415 (1950).PubMedGoogle Scholar
  314. Ebert, M.: Grundlagen für das Arbeiten mit radioaktiven Isotopen. In H. SCnWIEGK u. Mitarb., S. 103–119. 1953.Google Scholar
  315. Ebner, H., u. H. Strecker: Wirkung des Colchicins in vivo auf die alkalische Phosphatase der Rattenleber. Experientia (Basel) 6, 388 (1950).Google Scholar
  316. Edlbacher, S., u. F. Leuthardt: Lehrbuch der physiologischen Chemie, 10. Aufl., 2. Hälfte 1952.Google Scholar
  317. Ecgleton, W. G. E.: The zinc content of epidermal structures. Chin. J. Physiol. 13, 399 (1938).Google Scholar
  318. Einarson, L.: Om fluorescerende, syrefaste stoffer i nervesystemet hos voksne rotter i kronisk e-vitaminmangel. Soertryk of U.f.L. 114, 1186 (1952).Google Scholar
  319. Ebel, J.-P., Deposits of fluorescent acid-fast products in the nervous system and skeletal muscles of adult rats with chronic vitamin-E deficiency. J. Neurol., Neurosurg. a. Psychiatr. 16, 98 (1953).Google Scholar
  320. Ekman, C.-A., and H. Holmgren: Effect of alimentary factors on liver glycogen rhythm and the distribution of glycogen in the liver lobule. Anat. Rec. 104, 189 (1949).PubMedGoogle Scholar
  321. Elftman, H.: Response of the alkaline phosphatase of the adrenal cortex of the mouse to androgen. Endocrinology 41, 85 (1947).PubMedGoogle Scholar
  322. Elliott, K. A. C., and B. Libet: Oxidation of phospholipid catalyzed by iron compounds with ascorbic acid. J. of Biol. Chem. 152, 617 (1944). ELLIS, W. G.: Calcium and the resistance of Nereis to brackish water. Nature (Lond.) 132, 748 (1933).Google Scholar
  323. Ellis, W. J., J. M. Gillespie and H. Lindley: Biochemical studies of the wool root. Nature (Lond.) 165, 545 (1950).Google Scholar
  324. Elvehjem, C. A., E. B. Hart and W. C. Sherman* The avaibility of iron from different sources for hemoglobin formation. J. of Biol. Chem. 103, 61 (1933).Google Scholar
  325. Elvehjem, C. A., and B. E. Kline• Calcium and phosphorus studies in the chick. J. of Biol. Chem. 103, 733 (1933).Google Scholar
  326. Elvehjem, C. A., and W. C. Sherman: Action of copper in iron metabolism. J. of Biol. Chem. 98,, 309 (1932).Google Scholar
  327. Emmel, V. M.: The intracellular distribution of alkaline phosphatase activity following various methods of histologic fixation. Anat. Rec. 95, 159 (1946).PubMedGoogle Scholar
  328. Ebel, J.-P., A cytochemical and quantitative study of the effects of potassium cyanide on alkaline phosphatase activity in the kidney and intestine. Anat. Rec. 96, 423 (1946).Google Scholar
  329. Ebel, J.-P., Effects of HCl on alkaline phosphatase in kidney and intestine. Proc. Soc. Exper. Biol. a. Med. 75, 114 (1950).Google Scholar
  330. Ebel, J.-P., The effect of magnesium sulfate on acid inactivation of renal and intestinal alkaline phosphatase. Science (Lancaster, Pa.) 113, 267 (1951).Google Scholar
  331. Emmerich, W. S., and J. D. Kurbatov: Radiations of Nd147. Physic. Rev. 81, 1062 (1951). The disintegration of Nd147. Physic. Rev. 83, 40 (1951).Google Scholar
  332. Endicott, K. M., and H. Yagoda: Microscopic historadiographic technic for locating and quantitating radioactive elements in tissues. Proc. Soc. Exper. Biol. a. Med. 64, 170 (1947).Google Scholar
  333. Engel, M. B., and W. Furuta: Histochem. studies of phosphatase distribution in developing teeth of albino rat. Proc. Soc. Exper. Biol. a. Med. 50, 5 (1942).Google Scholar
  334. Engfeldt, B., A. EngstrÖM and H. Boström: The localisation of radiosulfate in bone tissue. Exper. Cell. Res. 6, 251–253 (1954).Google Scholar
  335. Engfeldt, B., A. Engström and R. Zetterström: Renewal of phosphate in bone minerals. 2. Radioautographic studies of the renewal of phosphate in different structures of bone. Biochim. et Biophysica Acta 8, 375 (1952).Google Scholar
  336. Engström, A.: Korrelation zwischen Aschengehalt und Ultraviolettabsorption bei verschiedenen Zellbestandteilen. Chromosoma 2, 459 (1943). The localization of mineral salts in striated muscle-fibres. Acta physiol. stand. 8, 137 (1944).Google Scholar
  337. Ebel, J.-P., Quantitative micro-and histochemical elementary analysis by Roentgen absorption spectography. Acta radiol. (Stockh.) Suppl. 63 (1946).Google Scholar
  338. Ebel, J.-P., Nature (Lond.) 158, 664 (1946).Google Scholar
  339. Ebel, J.-P., Proc. Int. Congr. Exper. Cytol. (1947).Google Scholar
  340. Ebel, J.-P., A new differential X-ray absorption method for elementary chemical analysis. Rev. Sci. Instruments 18, 681 (1947).Google Scholar
  341. Ebel, J.-P., Qualitative microchemical analysis by microradiography with fluorescent screen. Experientia (Basel) 3, 208 (1947).Google Scholar
  342. Ebel, J.-P., Ultramicroanalysis by X-ray absorption spectrography. Trans. Instrum. a. Measurem. Conference Stockholm 1947.Google Scholar
  343. Ebel, J.-P., Metabolism and molecular structure of mineral salts in bone tissue during growth and certain pathological conditions. Proc. of the Infant Metabolism Seminar in Stockholm 1950.Google Scholar
  344. Ebel, J.-P., Submicroscopic structure of striated muscle. Scand. J. Clin. a. Labor. Invest. 2, 252 (1950). Note on the cytochemical analysis of elements by Roentgen rays. Acta Radiol. (Stockh.) 36, 393 (1951).Google Scholar
  345. Engström, A., u. R. Amprino: X-ray diffraction and X-ray absorption studies of immobilized bones. Experientia (Basel) 6, 267 ( 1950 ). Studies on X-ray absorption and diffraction of bone. Acta anat. ( Basel ) (1951).Google Scholar
  346. Engström, A., and B. Engfeldt: X-ray diffraction studies on bone tissue during hyperparathyroidism. Acta path., stand. (Kobenh.) 28, 152 (1951).Google Scholar
  347. Eng-Ström, A., and D. Glick: The mass of gastric mucosa cells measured by X-ray absorption. Science (Lancaster, Pa.) 111, 379 (1950).Google Scholar
  348. Engström, A., D. Glick and B. Malmström: A critical evaluation of quantitative histo-and cytochemical microscopic techniques. Science (Lancaster, Pa.) 114, 253 (1951).Google Scholar
  349. Malmström, A., and L. v. Hamos: Microanalysis by secondary Roentgen spectrography. Acta radiol. (Stockh.) 25, 325 (1944).Google Scholar
  350. Malmström, A., u. B. Malmström: The photographic action of X-rays of wavelengths 2, 5–25 A. Experientia (Basel) 3, 1 (1947).Google Scholar
  351. Histochemical analysis by X-rays of long wavelengths. Experientia (Basel) 3, 191 (1947).Google Scholar
  352. Engström, A., and L. Wegstedt: Equipment for microradiography with soft Röntgen rays. Acta radiol. (Stockh.) 35, 345 (1951).Google Scholar
  353. Engström, A., and M. Weissbluth: Absorption of X-rays in inhomogeneous histo-and cytochemical samples. Exper. Cell. Res. 2, 711 (1951).Google Scholar
  354. Engström, A., and R. Zetterström: Studies on the ultrastructure of the bone. Exper. Cell. Res. 2, 268 (1951).Google Scholar
  355. Entenman, C., J. L. Chaikoff and H. D. FriedlÄnder: The influence of ingested choline upon choline-containing and non-holinecontaining phospholipids of the liver as measured by radioactive phosphorus. J. of Biol. Chem. 162, 111 (1946).Google Scholar
  356. Entenman, C., G. W. Changus, G. E. Gibbs and J. L. Chaikoff: The response of lipid metabolism to alterations in nutritional state. 1. The effects of fasting and chronic undernutrition upon the postabsorptive level of the blood lipids. J. of Biol. Chem. 134, 59 (1940).Google Scholar
  357. Entenmann, E., S. Ruben, J. Perlman, F. W. Lorenz and J. L. Chaikoff: Radioactive phosphorus as an indicator of phospholipide metabolism. 3. The conversion of phosphate to lipoid phosphorus by the tissues of the laying and non-laying bird. J. of Biol. Chem. 124, 795 (1938).Google Scholar
  358. Erbacher, D., u. E. Wannemacher• Frage von Stoffwechselvorgängen in den Zahnhartgeweben. Dtsch. Zahn-usw. Heilk. 8 (1941).Google Scholar
  359. Erf, L. A., L. W. Tuttle and J. H. Lawrence: Ann Int. Med. 15, 487 (1941).Google Scholar
  360. Ernst, P.: Störungen des Mineralstoffwechsels. Verkalkung. In BETHE-BERGMANN-EMBDEN-ELLINGERS Handbuch der normalen und pathologischen Physiologie, Bd. 5, S. 1276. Berlin: Springer 1928.Google Scholar
  361. Errera, M., et A. Herve • Mécanismes de l’action biologique des radiations. Liège: Desoer, Paris: Masson & Cie. 1951.Google Scholar
  362. Euler, H. v., and L. Hahn• Concentrations of RNA and DNA in animal tissues. Arch. of Biochem. 17, 285 (1948).Google Scholar
  363. Evans, C. L., and H. Hartridge: Starling’s Principles of Human Physiology. London: Churchill 1941.Google Scholar
  364. Evans, T. C.: Radioautographs in which the tissue is mounted directly on the photoraphgic plate. Proc. Soc. Exper. Biol. a. Med. 64, 313 (1947).Google Scholar
  365. Evans, T. H.: Applications of atomic energy in medical research. Trans. Amer. Acad. Ophthalm. a. Otolaryng. 1948, 88.Google Scholar
  366. Fairbanks, B. W., and H. H. Mitchell: The relation between calcium retention and the store of calcium in the body, with particular reference to the determination of calcium requirements. J. Nutrit. 11, 551 (1936).Google Scholar
  367. Falkenheim, M., E. E. Underwood and H. C. Hodge: Calcium exchange as a mechanism of adsorption of the radioactive isotope by bone. Rep. from the Univers. of Rochester At. Energy Proj. 1949.Google Scholar
  368. Fairbanks, B. W., and H. H. Mitchell: Ca45. J. of Biol. Chem. 188, 805 (1951).Google Scholar
  369. Fannkuchen, J.: Annual Rev. Biochem. 14, 207 (1945).Google Scholar
  370. Faure, M., et M. J. Coulon: Phosp hatides du muscle cardiaque. Bull. Soc. Chim. biol. Paris 30, 533 (1948).Google Scholar
  371. FaurÉ-FRÉMiet, E.: Structure de la capsule ovulaire chez quelques sélaciens. Archives Anat. microsc. 34, 23 (1938).Google Scholar
  372. Fairbanks, B. W., and H. H. Mitchell: Les Applications du Microscope Electronique it la Biologie. Microscopie, Paris 1 (1948).Google Scholar
  373. Feigin, J., A. Wolf and E. Kabat: Localization of alk. phosphatase. Amer. J. Path. 26, 647 (1950).PubMedGoogle Scholar
  374. Ferreira, J. F., and L. C. U. Junqueira• Proteins and ribonucleic acid turnovers rates related to digestive enzymes activity of pigeon pancreas. Arch. of Biochem. a. Biophysics 1955.Google Scholar
  375. Fell, H. B., and R. Robison: The development of the calcifying mechanism in avian cartilage and osteoid tissue. Biochemie. J. 28, 2243 (1934).Google Scholar
  376. Fenn, W. O.: Electrolytes in muscle. Physiologic. Rev. 16, 450 (1936).Google Scholar
  377. Fenn, W. 0., and D. M. Cobb: Electrolyte changes in muscle during activity. Amer. J. Physiol. 115, 345 (1936).Google Scholar
  378. Ficq, A., F. Gavosto et M. Errera• Incorporation in vitro de glycine-1-C14 dans les cellules individuelles de la moelle osseuse. Exper. Cell Res. 6, 69 (1954).Google Scholar
  379. Fink, R. M.: Biological Studies with Polonium, Radium and Plutonium. New York: McGraw-Hill 1950. Science (Lancaster, Pa.) 114, 143 (1951).PubMedGoogle Scholar
  380. Firket, H.: Recherches sur la régénération de la peau de mammifère. 2. Étude histochimique. Archives de Biol. 62, 335 (1951).Google Scholar
  381. Fairbanks, B. W., and H. H. MITCHELL: Critique expérimentale de la mise en évidence de phosphatase alcaline dans les noyaux. Bull. Microscopie appl. 2, 57 (1952).Google Scholar
  382. Fischer, A.: Biology of Tissue Cells. Cambridge 1946.Google Scholar
  383. Fischer, C. J.: Effect of magnesium on alkaline phosphatase as influenced by pH, enzyme concentration and aging. Federat. Proc. 7, No 1 (1948).Google Scholar
  384. Fischer, C. J., and R. O. GREEP: Activation of purified alkaline phosphatase. Arch. of Biochem. 16, 199 (1948).Google Scholar
  385. Fischer, E.: The submicroscopical structure of muscle and its changes during contraction and stretch. Cold Spring Harbor Symp. Quant. Biol. 4, 214 (1936).Google Scholar
  386. Fairbanks, B. W., and H. H. Mitchell: Potassium in denervated, treated and nontreated muscle. Arch. Physic. Med. 30, 375 (1949).Google Scholar
  387. Fischer, E., J. W. Moore, H. V. Skowlund, K. W. Ryland and N. J. Copenhaver: The potassium permeability and the capacity for potassium storage of normal and atrophied muscle, investigated with the radioactive isotope K42. Arch. Physic. Med. 31, 429 (1950).Google Scholar
  388. FISCHER, H.: Die Bedeutung der anorganischen Ionen für die normalen und pathologischen Lebensvorgänge. Schweiz. Arch. Neur. 28 (1932).Google Scholar
  389. Fisher, J., and D. Glick: Histochemistry. XIX. Localization of alkaline phosphatase in normal and pathological human skin. Proc. Soc. Exper. Biol. a. Med. 66, 14 (1947).Google Scholar
  390. Fishler, M. C., C. Entenman, M. L. M.Ntgomery and J. L. Chaikoff: The formation of phospholipid by the hepatectomized dog as measured with radioactive phosphorus. 1. The site of formation of plasma phospholipide. J. of Biol. Chem. 150, 47 (1943).Google Scholar
  391. Fiske, C. H., and Y. Subbarow: Colorimetric determination of phosphorus. J. of Biol. Chem. 66, 375 (1925).Google Scholar
  392. Fitzgerald, P. J.: Review of autoradiography in cancer. Cancer (N. Y.) 5, 165 (1952).Google Scholar
  393. Fairbanks, B. W., and H. H. Mitchell: Radio-autography in cytology. Texas Rep. Biol. a. Med. 11, 671 (1953).Google Scholar
  394. Fitzgerald, P. J., E. B. Simmel and C. Martin: Radioautography, theory, technic and applications. Labor. Invest. 2, 181 (1951).Google Scholar
  395. Flexner, L. B., and J. B. FLEXI ER: Biochemical and physiological differentiation during morphogenesis IX. The extracellular and intracellular phases of the liver and cerebral cortex of the fetal guinea-pig as estimated from distribution of chloride and radiosodium. J. Cellul. a. Comp. Physiol. 34, 115 (1949).Google Scholar
  396. Fairbanks, B. W., and H. H. Mitchell: Biochemical and physiological differentiation during morphogenesis XII Compounds of phosphorus in the developing cerebral cortex and liver of the fetal guinea pig. J. Cellul. a. Comp. Physiol. 36, 351 (1950).Google Scholar
  397. FoLIN, O.: Laboratory Manual of Biological Chemistry. 5. Aufl. New York: Appleton-Century-Crofts 1934.Google Scholar
  398. Folley, S. J., and A. L. Greenbaum: Changes in the arginase and alkaline phosphatase contents of the mammary gland and liver of the rat during pregnancy. Lactation and mammary involution. Biochemie. J. 41, 261 (1947).Google Scholar
  399. FoLLis jr., R. H.: Some histochem. observations on normal and diseased cartilage and bone. Metabolic Interrelations, S. 27. New York Edit. Reifenstein 1949.Google Scholar
  400. FoLLis jr., R. H., H. G. DAY and E. V. McCoLLUM: Histological studies of the tissues of rats fed a diet extremely low in phosphorus. J. Nutrit. 20, 181 (1940).Google Scholar
  401. Follis jr., R. H., E. ORENT-KEILES and E. V. McCoLLUM: Histologic studies of the tissues of rats fed a diet extremely low in sodium. Arch. of Path. 33, 504 (1942).Google Scholar
  402. Fonbrune, P. DE: Technique de Micromanipulation. Paris: Masson & Cie 1949.Google Scholar
  403. Francis, G. E., W. Mulligan and A. Wormall: Isotopic Tracers. Univ. of London, Athlone Press 1954.Google Scholar
  404. French, E. L., E. A. Welch, J. Simmons, M. L. Lefevre and H. C. Hodges: Calcium, phosphorus and carbon dioxide determinations on all the dentine from sound and carious teeth. J. Dent. Res. 17, 401 (1938).Google Scholar
  405. Frey-Wyssling, A.: Elektronen-Mikroskopie.Vjschr. naturforsch.Ges. Zürich 95 (1950).Google Scholar
  406. Friedenwald, J. S., and J. E. Crowell: Histochemical studies on nucleic acid phosphatase. Bull. Hopkins Hosp. 84, 568 (1949).PubMedGoogle Scholar
  407. FriedlÄnder, G., and J. W. Kennedy: Introduction to Radiochemistry. New York: John Wiley a. Sons 1949.Google Scholar
  408. FRIES, B. A., G. W. CHANGUS and J. L. CHAIKOFF: Radioactive phosphorus as an indicator of phospholipid metabolism. 9. The influence of age on the phospholipid metabolism of various parts of the central nervous system of the rat. The comparative phospholipid activity of various parts of the central nervous system of the rat. J. of Biol. Chem. 132, 23 (1940).Google Scholar
  409. FRIES, B. A., H. SCHACHNER and J. L. CHAIKOFF: The in vitro formation of phospholipid by brain and nerve with radioactive phosphorus as indicator. J. of Biol. Chem. 144, 59 (1942).Google Scholar
  410. FROHMAN, C. E., and V. E. KINSEY: Studies on the crystalline lens. 5. Distribution of various phosphate-containing compounds and its significance with respect to energetics. A. M. A. Arch. of Ophthalm. 48, 12 (1952).Google Scholar
  411. FUKUDA, T. R.: Ionic antagonism in the water permeability of sea urchin eggs. J. Cellul. a Comp. Physiol. 7, 301 (1935).Google Scholar
  412. Fulton, Jon-N: Howell’s Physiology, 15. Aufl. New York: W. B. Saunders Company 1946. FURUTA, W. J.: Fiber in decalcified bone matrix by enzymatic digestion. Anat. Rec. 104, 309 (1949).Google Scholar
  413. GABE, M.: Action de la catéchine sur la répartition du fer. Experientia (Basel) 10, 391 (1950).Google Scholar
  414. GABE, M.: Modifications rénales au cours de l’intoxication alloxanique. Acta anat. (Basel) 10, 238 (1950). Données histologiques sur l’ovogenèse chez Oncidiella celtica. Bull. Labor. Dinard. 34, 10 (1951).Google Scholar
  415. et H. A. BERN: Modifications synchromes de]’activité phosphatasique et du chondriome du rein au cours du développement post-natal chez le rat albinos. C. r. Soc. Biol. Paris 147, 32 (1953).Google Scholar
  416. et M. PRENANT: Quelques aspects cytologiques du métabolism du fer chez Acanthochites fascicularis. Archives Anat. microsc. 37, 136 (1948).Google Scholar
  417. GABE, M.: Phosphatases alcalines chez Acanthochites. Experientia (Basel) 12, 476 (1949).Google Scholar
  418. GABRIO, B. W., and K. SALOMON: Ferretin in intestine and mesenteric lymph nodes after iron feeding. Proc. Soc. Exper. Biol. a. Med. 75, 124 (1950).Google Scholar
  419. Gage, S, H.: Microincineration. Stain Technol. 13, 25 (1938).Google Scholar
  420. Gardner, W. U., and C. A. Pfeiffer: Influence of estrogens and androgens on the skeletal system. Physiologic. Rev. 23, 139 (1943).Google Scholar
  421. Gaunt, W. E., H. D. Griffith and J. T. Irving• Assimilation of radioactive phosphorus following phosphorus deficiency in rats. J. of Physiol. 100, 372 (1942).Google Scholar
  422. Gautheret, R. J.: La Cellule. Principes de Cytologie générale et végétale. Paris: A. Michel 1949.Google Scholar
  423. Gerebtzoff, M. A., G. Ninane et J. Firket • Phosphatase alcaline, système nerveux, plexus chorioideus. C. r. Soc. Biol. Paris 143, 734 (1949).Google Scholar
  424. Gerlach, W.: Aschebild in der Pathologie. Verh. dtsch. path. Ges. 26, 163 (1931). ’ Chemie der Konkremente. Verh. dtsch. path. Ges. 1934, 277. Cu in menschlichen und tierischen Organen. Virchows Arch. 294, 171 (1934).Google Scholar
  425. Gabe, M.: Goldverteilung bei Mensch und Kaninchen. Arch. exper. Path. u. Pharmakol. 179, 286 (1935). Cu-Gehalt der Tumoren und Leber. Z. Krebsforsch. 42, 290 (1935). Schwermetallstoffwechsel. Jkurse ärztl. Fortbildg 1935, 5.Google Scholar
  426. Gerlach, W., U. W. Gerlach* Gold- und Silbernachweis im Gewebe. Virchows Arch. 282, 209 (1931).Google Scholar
  427. Gabe, M.: Die chemische Emissions-und Spektralanalyse. 2. Teil, Anwendung in Medizin, Chemie und Mineralogie. Leipzig: Voss 1933.Google Scholar
  428. Gerlach, W., U. R. MÜLLER• Strontium und Barium. Virchows Arch. 294, 210 (1934).Google Scholar
  429. Gabe, M.: Ba-Gehalt tierischer und menschlicher Augen. Virchows Arch. 296, 588 (1936).Google Scholar
  430. Gerlach, W., K. Ruthardt U. L. Prusener: Bestimmung von Gold in Geweben. Beitr. path. Anat. 91, 617 (1933).Google Scholar
  431. Gerschman, R.: Variaciones estacionales o por hipofisectomia de los elementes minerales del plasma del capo. Rev. Soc. argent. Biol. 19, 170 (1943).Google Scholar
  432. Gersh, J.: The Altmann technique for fixation by drying while freezing. Anat. Rec. 53, 309 (1932); 57, 205, 217 (1933).Google Scholar
  433. Gabe, M.: Note on the pineal gland of the humpback whale. J. Mammal. 19, 477 (1938). Microincinceration. Physiologic. Rev. 21, 242 (1941).Google Scholar
  434. Gabe, M.: Application in pathology, method freezing-drying. Bull. Internat. Assoc. Med. Mus. 28, 179 (1948).Google Scholar
  435. Gileman, T., K. M. Endicott, G. Brecher, A. T. Ness, F. A. Clarke and E. R. Adamik• J Labor. a. Clin. Med. 34, 414 (1949).Google Scholar
  436. Glick, D.: Techniques of Histoand Cytochemistry. New York: Interscience Publ. 1951.Google Scholar
  437. Glick, D., A. Engström and B. G. Malmström: A critical evaluation of quantative histo-and cytochemical microscopic techniques. Science (Lancaster, Pa.) 114, 253 (1951).Google Scholar
  438. Glock, G. E., H. Mellanby, M. M. Murray and J. Thewlis: A study in the development of dental enamel in dogs. J. Dent. Res. 21, 183 (1942).Google Scholar
  439. Godlewski, A. H.: Microincinération effectué it l’aide d’un dispositif nouveau permettant le contrôle direct de ce processus. Bull. Histol. appl. 15, 245 (1938).Google Scholar
  440. Goetsch, J. B., and P. M. Reymolds: Obtaining uniform results in the histochemical technic for acid phosphatase. Stain Technol. 26, 145 (1951).Google Scholar
  441. Goldberg, R. C., and J. L. Chaikoff: On the nature of the hypertrophied pituitary gland induced in the mouse by J131 injections and the mechanism of its development. Endocrinology 48, 1 (1951).PubMedGoogle Scholar
  442. Gabe, M.: Development of thyroid neoplasms in the rat, following a single injection of radioactive iodine. Proc. Soc. Exper. Biol. a. Med. 76, 563 (1951).Google Scholar
  443. Goldsmith, R. E., C. D. Stevens and L. Schiff: Concentration of iodine in the human stomach and other tissues. J. Labor. a. Clin. Med. 35, 497 (1950).Google Scholar
  444. Gomori, G.: Iron. Amer. J. Path. 12, 655 (1936).Google Scholar
  445. Gabe, M.: Microtechnical demonstration of phosphatase in tissue sections. Proc. Soc. Exper. Biol. a. Med. 24, 23 (1939).Google Scholar
  446. Gabe, M.: Distribution of acid phosphatase in the tissues under normal and under pathologic conditions. Arch. of Path. 32, 189 (1941).Google Scholar
  447. Gabe, M.: J. Cellul. a. Comp. Physiol. 17, 71 (1941).Google Scholar
  448. Gabe, M.: Hexose diphosphatase. J. of Biol. Chem. 148, 139 (1943). Histochemical demonstration of sites of phosphamidase activity. Proc. Soc. Exper. Biol. a. Med. 69, 407 (1948).Google Scholar
  449. Gabe, M.: Histochemical specificity of phosphatases. Proc. Soc. Exper. Biol. Med. 70, 7 (1949).Google Scholar
  450. Gabe, M.: Histochem. specificity of phosphatases. Proc. Soc. Exper. Biol. a. Med. 72, 449 (1949).Google Scholar
  451. Gabe, M.: An improved histochemical technic for acid phosphatase. Stain Technol. 25, 81 (1950).Google Scholar
  452. Gabe, M.: Sourcis of error in enzymatic histochemistry. J. Labor. a. Clin. Med. 35, 802 (1950).Google Scholar
  453. Gabe, M.: Microscopic Histochemistry. Univ. of Chicago Press 1952.Google Scholar
  454. Goodspeed, T., and F. Uber: Application of the Altmann freezing drying technique to plant cytology. Univ. California Publ. Bot. 18, 23 (1935). GORBMAN, A.: Radioautography in biological research. Nucleonics 2, 30 (1948).Google Scholar
  455. Gortner jr., R. A., and W. A. GORTNER: Outlines of Biochemistry. New York: John Wiley & Sons 1950.Google Scholar
  456. Gould, B. S.: Action of alkaline phosphatase. J. of Biol. Chem. 156, 365 (1944).Google Scholar
  457. Govaerts, J., et A. LAMBRECHTS: Fer. Acta biol. belg. 4, 209 (1943).Google Scholar
  458. Grad, B., and C. E. Stevens: Histological changes produced by a single large injection of radioactive phosphorus (P32) in albino rats and in C3H mice. Cancer Res. 10, 289 (1950).PubMedGoogle Scholar
  459. Grad, B., C. E. Stevens and C. P. Leblond: The localization of radio-phosphorus in soft tissues with resulting destruction. Acta Union internat. contre Cancer 7, 834 (1952).Google Scholar
  460. Graff, W. S., K. G. Scott and J. H. Lawrence: The histologic effects of radiophosphorus on normal and lymphomatous mice. Amer. J. Roentgenol. 55, 44 (1946).Google Scholar
  461. Granick, S.: Iron and porphyrin metabolism in relation to the red bloodcell. J. of Biol. Chem. 164, 737 (1946). ’ Ann. New York Acad. Sci. 48, 657 (1947).Google Scholar
  462. Granick, S., and P. F. Hahn• J of Biol. Chem. 155, 66 (1944).Google Scholar
  463. Grant, R.: Calcium in gastric mucus and regulation of gastric acidity. Amer. J. Physiol. 135, 498 (1942). GRAY, L. H.: Biological Actions of Ionising Radiations. Progress in Biophysics, Bd. 2. London: Pergamon Pr. 1951.Google Scholar
  464. Greenberg, D. M.: Mineral metabolism • Calcium, magnesium, and phosphorus. Annual Rev. Biochem. 8, 269 (1939).Google Scholar
  465. Gabe, M.: The interaction between the alkali earth cations, particularly calcium, and proteins. Adv. Protein Chem. 1 (1944).Google Scholar
  466. Gabe, M.: Ca45, Sr89, vitamin D. J. of Biol. Chem. 157, 99 (1945).Google Scholar
  467. Greenberg, D. M., W. W. Campbell and M. Mdrayama: Studies in mineral metabolism with the aid of artificial radioactive isotopes. 5. The absorption, excretion, and distribution of labelled sodium in rats maintained on normal and low sodium diets. J. of Biol. Chem. 163, 35 (1940).Google Scholar
  468. Greenberg, D. M., and F. M. Troescher: C45 excretion, bile. Proc. Soc. Exper. Biol. a. Med. 49, 488 (1942).Google Scholar
  469. Greenberg, G. R., and M. M. Wintrobe: Iron metabolism. J. of Biol. Chem. 165, 397 (1946).Google Scholar
  470. Greenwald, J.: The dissociation of some calcium salts. J. of Biol. Chem. 124, 437 (1938).Google Scholar
  471. Greep, R. O., and C. J. Fischer: Parathyroids and vitamin D in mineral stress. Federat. Proc. 9, No 1 (1950).Google Scholar
  472. Greet, R. O., C. J. FISCHER and A. MORSE: Histochemical demonstration of alkaline phosphatase in decalcified dental and osseous tissues. Science (Lancaster, Pa.) 105, 666 (1947).Google Scholar
  473. Gabe, M.: Alkaline phosphatase in odontogenesis and osteogenesis. J. Amer. Dent. Assoc. 36, 427 (1948).Google Scholar
  474. Gregoire, Charles: Microscope electronique et Recherche biologique. Paris: Masson & Cie. 1950.Google Scholar
  475. Gresson, R. A. R.: Essentials of General Cytology. Edinburgh: Univ. Press 1948.Google Scholar
  476. Groebbels, F.: Der Vogel, Bau, Funktion, Lebenserscheinung, Einpassung, Bd. 2. Geschlecht und Fortpflanzung. Berlin: Gebrüder Bornträger 1937.Google Scholar
  477. Groen, J., W. A. van den Broek and H. Veld-Man: Iron metabolism. Biochim. et biophysica Acta 1, 315 (1947).Google Scholar
  478. Gross, J., R. Bogoroch, N. J. Nadler and C. P. Leblond: The theory and methods of the radioautographic localization of radioelements in tissues. Amer. J. Roentgenol. 65, 420 (1951).Google Scholar
  479. Gross, J., and C. P. Leblond: Histological localization of radioactive elements (review). Canad. Med. Assoc. J. 57, 102 (1947).Google Scholar
  480. Grossman, M. J., C. C. Wang and K. J. Wang: Alkaline phosphatase-correlation of histochemical demonstrability in pancreatic tissue with presence in pancreatic juice. Proc. Soc. Exper. Biol. a. Med. 78, 310 (1951).Google Scholar
  481. Gruner, J. W., D. Mcconnell and W. D. Armstrong: The relationship between crystal structure and chemical composition of enamel and dentin. J. of Biol. Chem. 121, 771 (1937).Google Scholar
  482. Grunt, J. A., and J. H. Leathem: Alkaline phosphatase in the mouse thyroid following testosterone propionate, thiouracil and thyroglobulin. Proc. Soc. Exper. Biol. a. Med. 72, 218 (1949).Google Scholar
  483. Guardabassi, A.: L’organo endolinfatigo degli Anfibi anuri. Arch. ital. Anat. 57, 241 (1952).Google Scholar
  484. Gabe, M.: Les sels de Ca du sac endolymphatique et les processus de calcification des os pendant la métamorphose normale et expérimentale chez les têtards de Bufo vulgaris, Rana dalmatina, Rana esculenta. Arch. d’Anat. microsc. 42, 143 (1953).Google Scholar
  485. Guardabassi, A., e E. Ferreri• L’assorbimento dei]ipidi nell’intestino di Helix pomatia. La fosfotasi alcalina nell’intestino di Helix pomatia. Boll. Soc. ital. Biol. sper. 27, 1037, 1039 (1951).PubMedGoogle Scholar
  486. Guardabassi, A., e M. Sacerdote: Fosfatasi intestinale e lacunoma in rapporto allo stato funzionale degli enterociti. M.nit. zool. ital. (Suppl. Atti Soc. ital. Anat.) 59, 1–4 (1950).Google Scholar
  487. Gabe, M.: Fosfatasi intestinale e lacunoma in rapporto allo stato funzionale degli enterociti. Arch. di Sci. biol. 35, 87 (1951).Google Scholar
  488. Gabe, M.: La lamina calcificata del derma cutaneo di anfibi anuri nostrani ed esociti. Arch. ital. Anat. 56, 247 (1951).Google Scholar
  489. Guberniev, M. A., and L. J. JL’INA: Quantitative changes of nucleic acids in the pancreas and liver of dog in the course of secretion. Dokl. Akad. Nank. SSSR. 71, 351 (1950). Ref. Chem. Abstr. 44, 1183 (1950).Google Scholar
  490. Gulland, J. M., G. R. Barker and D. O. Jordan: The chemistry of the nucleic acids and nucleoproteins. Annual. Rev. Biochem. 14, 175 (1945).Google Scholar
  491. Gustafson, T., and J. Hasselberg: Alkaline phosphatase activity in developping sea urchin eggs. Exper. Cell Res. 1, 371 (1950).Google Scholar
  492. Guiseppe, M.: Fosforo. Boll. Soc. ital. Biol. sper. 16, 725 (1941).Google Scholar
  493. Gutman, A. B., and B. Jones’ Inhibition by cyanide of serum alkaline phosphatase in normal man, obstructive jaundice and skeletal disorders. Proc. Soc. Exper. Biol. a. Med. 71, 572 (1949).Google Scholar
  494. Györgi, P.: Umsatz der Erd-alkalien (Ca, Mg) und des Phosphats. In BETHE-BERGMANN-EMBDEN-ELLINGERS Handbuch der normalen und pathologischen Physiologie, S. 1555. Berlin: Springer 1931.Google Scholar
  495. Hack, M. H.: The phosphatide composition of human erythrocytes. Federat. Proc. 7, 248 (1948). Distribution of the phosphatides in rat-liver nuclei and cytoplasmic particulates. Amer. J. Physiol. 155, 441 (1948).Google Scholar
  496. Hahn, L.: Formation of phosphatides in liver perfusion experiments. Biochemie. J. 32, 342 (1938).Google Scholar
  497. Hahn, L., and G. v. Hevesy: Formation of phos-phatides in brain tissue of adult animals. Skand. Arch. Physiol. (Berl. u. Lpz.) 77, 148 (1937).Google Scholar
  498. Hack, M. H.: Origin of yolk lecithin. Nature (Lond.) 140, 1059 (1937).Google Scholar
  499. Hann, L, G v. Hevesy and E. C. Lundsgaard: The circulation of phosphorus in the body revealed by application of radioactive phosphorus as indicator. Biochemie. 31, 1705 (1937).Google Scholar
  500. Hahn, P. F.: The use of radioactive isotopes in the study of iron and hemoglobin metabolism and the physiology of the erythrocyte. Medicine 16, 249 (1937).Google Scholar
  501. Hack, M. H.: Adv. Biol. a. Med. Physics 1, 132 (1948).Google Scholar
  502. Hahn, P. F., W. F. Bale and W. M. Balfour: Amer. J. Physiol. 135, 600 (1942).Google Scholar
  503. Hahn, P. F., W. F. Bale, E. O. Lawrence and G. H. Whipple: Radioactive iron and its metabolism in anemia. Its absorption, transportation and utilization. J. of Exper. Med. 69, 739 (1939); 70, 443 (1939); 71, 731 (1940).Google Scholar
  504. Hahn, P. F., W. F. Bale, J. F. Ross, W. M. Balfour and G. H. Whipple: Radioactive iron absorption by gastrointestinal tract. Influence of anemia, anoxia and antecedent feeding. Distribution in growing dogs. J. of Exper. Med. 78, 169 (1943).Google Scholar
  505. Hack, M. H.: Amer. J. Physiol. 143, 191 (1945).Google Scholar
  506. Hahn, P. F., W. F. BALE and G. H. WHIPPLE: Proc. Soc. Exper. Biol. a. Med. 61, 405 (1946).Google Scholar
  507. Hahn, P F, E. Jones, R. C. Lowe, G. R. Meneely and W. Peacock: Amer. J. Physiol. 143, 191 (1945).Google Scholar
  508. Hahn, P. F., J. F. Ross, W. F. Bale and G. H. Whipple: J. of Exper. Med. 71, 731 (1940).Google Scholar
  509. Hamberger, C.-A., u. H. HYDÉN: Transneuronal chemical changes in Deiter’s nucleus. Acta oto-laryng. (Stockh.) 75, 82 (1949).Google Scholar
  510. Hamburger, V.: A manual of experimental embryology. Chicago • University of Chicago Press 1942.Google Scholar
  511. Hamilton, J. G.: Applications of radioactive tracers to biology and medicine. J. Appl. Physics 12, 440 (1941).Google Scholar
  512. Hack, M. H.: The use of radioactive tracers in biology and medicine. Radiology 39, 541 (1942).Google Scholar
  513. Hack, M. H.: The metabolism of the fission products and the heaviest elements. Radiology 49, 325 (1947).Google Scholar
  514. Hack, M. H.: The metabolic properties of the fission products and actinide elements. Rev. Mod. Physics 20, 718 (1948).Google Scholar
  515. Hack, M. H.: The metabolism of the radioactive elements created by nuclear fission. New England J. Med. 240, 863 (1949).Google Scholar
  516. Hamilton, J. G. M. H. Soley and K. B. Eich- Horn: Deposition of radio iodine in human thyroid tissue. Univ. California Publ. Pharmacol. 1, 339 (1940).Google Scholar
  517. Ham, L. v., and A. Engström: Microanalysis by secondary Roentgen spectrography. Acta radiol.(Stockh.) 25, 325 (1944).Google Scholar
  518. Hamperl, H.: Die Fluorescenzmikroskopie menschlicher Gewebe. Virchows Arch. 292, 1–51 (1934).Google Scholar
  519. HAMPP, E. G.: Mineral distribution in the developing tooth. Anat. Rec. 77, 382 (1936).Google Scholar
  520. Hampton: Hemoglobin iron as a stimulus for the production of ferritin. Federat. Proc. 8 (1949).Google Scholar
  521. Hampton, J. K., and H. S. Mayerson: Hemoglobin iron as a stimulus for the reproduction of ferritin by the kidney. Amer. J. Physiol. 160, 1 (1950).PubMedGoogle Scholar
  522. Hanahan, D. J., and N. B. Everett: The metabolism of S35 sodium estrone sulfate in the adult female rat. J. of Biol. Chem. 185, 919 (1950).Google Scholar
  523. Hawaiian, D. J., N. B. Everett and C. D. DAVIS: Fate of S35 Na estrone sulfate in pregnant and non-pregnant rats. Arch. of Biochem. 23, 501 (1949).Google Scholar
  524. Handovsky, H.: Cellula. Tabulae Biol. 19 (3), 1–316 (1950).Google Scholar
  525. Hanle, W.: Künstliche Radioaktivität. Stuttgart 1952.Google Scholar
  526. Hansborough, L. A., and PH. A. Nicholas: Phosphorus P32 in the early chick embryo in presence of vit. D. J. of Exper. Zool. 112, 195 (1949).Google Scholar
  527. Harbers, E., u. K. H. Neumann: Grundlage der auteradiographischen Darstellung der Nucleinsäuren im Gewebeschnitt mit Hilfe von Radio-Phosphor. Z. Naturforsch. 9, 75 (1954). Autoradio-graphie als histochemische Methodik. Klin. Wschr. 1954, 337.Google Scholar
  528. Hard, W. L.: A histo-chem. and quantitative study of phosphatase in the placenta and fetal membranes of the guinea pig. Amer. J. Anat. 78, 47 (1946).PubMedGoogle Scholar
  529. Hard, W. L., and R. K. Hawkins: The role of the bile capillaries in the secretion of phosphatase by the rabbit liver. Anat. Rec. 106, 395 (1950).PubMedGoogle Scholar
  530. Hack, M. H.: Histochemical studies on the area postrema. Anat. Rec. 108, 216 (1950).Google Scholar
  531. Harn, W. L., and A. M. Lassek• The pyramidal tract. Effect of maximal injury on acid phosphatase content in neurons of cats. J. of Neurophysiol. 9, 121 (1946).Google Scholar
  532. Hargitay, B., W. Kuhn u. H. Wire: Eine mikrokryoskopische Methode für sehr kleine Lösungsmengen. Experientia (Basel) 7, 276 (1951).Google Scholar
  533. Harnapp, G. O.: Calcium in Körperflüssigkeiten. Klin Wschr. 1938, 1173; 1940, 1268. Mschr. Kinderheilk. 82, 352 (1940); 87, 69 (1941).Google Scholar
  534. Harrison, B. F., M. D. Thomas and G. R. Hill Radioautographs showing the distribution of sulfur in wheats. Plant. Physiol. 19, 245 (1944).PubMedGoogle Scholar
  535. Harrison, H. E., and H. C. Harrison• The uptake of radiocalcium by the skeleton: The effect of vitamin D and calcium intake. J. of Biol. Chem. 185, 857 (1950).Google Scholar
  536. Hack, M. H.: Studies with radio- calcium: The intestinal absorption of calcium. J. of Biol. Chem. 188, 83 (1951).Google Scholar
  537. Harrison, M. F.: Urinary excretion of fluorine in some New Zealand subjects. Brit. J. Nutrit. 3, 166 (1949).PubMedGoogle Scholar
  538. Hack, M. H.: Fluorine content of teas consumed in New Zealand. Brit. J. Nutrit. 3, 162 (1949).Google Scholar
  539. Harrow, Benjamin• Textbook of Biochemistry. New York 1950.Google Scholar
  540. , E. B., C. A. Elvehjem and G. O. • J of Exper. Med. 66, 145 (1937).Google Scholar
  541. Hart, E. B., H. Steenbock, J. Waddell and C. A. Elvehjem: Copper as a suplement to iron for hemoglobin building in the rat. J. of Biol. Chem. 77, 797 (1928).Google Scholar
  542. Hart, WM. M., and J. E. Thomas: Bicarbonate and chloride of pancreatic juice secreted in response to various stimuli. Gastroenterology 4, 409 (1945).Google Scholar
  543. Harvey, E. B., and G. J. Lavin: The eggs and half-eggs of Arbacia punctulata and the plutei, as photographed by ultraviolet, visible and infrared light. Exper. Cell. Res. 2, 393, 398 (1951).Google Scholar
  544. Hastings, A. B.: Tissues and body fluids. Harvey Lect. 1941.Google Scholar
  545. Haurowitz, F.: Chemistry and Biology of Proteins. New York: Academic Press 1950.Google Scholar
  546. Hack, M. H.: Progress in Biochemistry. New York 1950.Google Scholar
  547. Haven, F. L., and W. F. Bale: The fate of phospholipid injected intravenously into the rat. J. of Biol. Chem. 129, 23 (1939).Google Scholar
  548. Hawkins, W. B., and P. F. Hahn• Iron excretion. J. of Exper. Med. 80, 31 (1944).Google Scholar
  549. Hawkins, W. B., and G. H. Whipple: The life cycle of the red blood cell in the dog. Amer. J. Physiol. 122, 418 (1938).Google Scholar
  550. Haven, E. C.: Rev. espafi. Fisiol. 5, 199 (1949).Google Scholar
  551. Heath, J. C., and J. Liquier-Milward: Uptake, distribution of Z65. Biochem. et Biophysica Acta 5, 404 (1950).Google Scholar
  552. Hùbert, S.: Les phosphatases alcalines de l’intestin. Étude histochim. expérimentale. Arch. of Biol. 61, 235 (1950).Google Scholar
  553. Heilbrunn, L. V.: The action of calcium on muscle protoplasm. Physiologic. Zool. 13, 88 (1940).Google Scholar
  554. Hack, M. H.: Outline of General Physiology, 2. Aufl. Philadelphia u. London: W. E. Saunders Company 1943.Google Scholar
  555. Heilbrunn, L. V., and F. J. Wiercinski: The action of various cations on muscle protoplasm. J. Cellul. a. Comp. Physiol. 29, 15 (1947).Google Scholar
  556. Heilmeyer, L.: Radioisotope in der Heilkunde. 1952.Google Scholar
  557. Heilmeyer, L., W. Keiderling u. G. STÜWE: Kupfer und Eisen als körpereigene Wirkstoffe. Jena 1941.Google Scholar
  558. Heilmeyer, L., u. K. Plötner: Serumeisen. Jena 1937.Google Scholar
  559. Hele, M. P.: Phosphorylation and absorption of sugars in the rat. Nature (Loud.) 166, 786 (1950).Google Scholar
  560. Henokel, K. O.: Mikroveraschung. In ABDERHALDENS Handbuch der biologischen Arbeiten, Bd. V/2, S. 1470. 1929.Google Scholar
  561. HERBRAND-JAEGER: Das Adenylsäuresystem. 1952.Google Scholar
  562. Herlant, M., and P. S. Timiras • Alkaline phosphatases in various tissues of the rat during the alarmreaction. Endocrinology 46, 243 (1950).Google Scholar
  563. Hermann, F.: Veraschung von Magnesium. Z. wiss. Mikrosk. 32, 313 (1932).Google Scholar
  564. Herrmann, H., J. S. Nicholas and M. E. Vosgian: Liberation of inorganic phosphate from adenosinetriphosphate by fractions derived from developing rat muscle. Proc. Soc. Exper. Biol. a. Med. 72, 454 (1949).Google Scholar
  565. Hers, A. G., J. Berthlet et L. Berthlet: Phosphatase. Bull. Soc. Chim. biol. Paris 33, 21 (1951).PubMedGoogle Scholar
  566. Hertz, S., and A. Roberts: Radioactive iodine in the study of thyroid physiology. 7. The use of radioactive iodine therapy in hyperthyroidism. J. Amer. Med. Assoc. 131, 81 (1946).Google Scholar
  567. Hess, A., and C. H. U. Chu: A histochem. study of Frommann’s striations and a qualitative determination of chloride in mammalian nerve fibers. J. Cellul. a. Comp. Physiol. 39, 31 (1952).Google Scholar
  568. Heubner, W.: Mineralbestand des Körpers, Umsatz der Kieselsäure. Iri BETRE-BERGMANN-EMBDEN-ELLINGERS Handbuch der normalen und pathologischen Physiologie. Berlin: Springer 1931.Google Scholar
  569. Hevesy, G. v.: Retention of atoms of material origin in the adult white mouse. The Svedberg, S. 456. 1944.Google Scholar
  570. Hack, M. H.: Radioactive Indicators, their Application in Biochemistry, Animal Physiology and Pathology. New York: Interscience Publ. 1948. ’ Isotopen in Medizin und Naturwissenschaften. Naturwiss. Rdsch. 1953.Google Scholar
  571. Hevesy, G. v., u. A. H. W. Alten: P32, phospholipids. Kgl. danske, Vidensk. Selsk., biol. Medd. 14, 5 (1939).Google Scholar
  572. Hevesy, G. v., and W. D. Armstrong: Exchange of radio phosphate by dental enamel. J. Dent. Res. 19, 318 (1940).Google Scholar
  573. Hevesy, G. v., u. L. Hahn• P32, ovulation. Kgl. danske Vidensk. Selsk., biol. Medd. 14, 2 (1938).Google Scholar
  574. Hack, M. H.: P32 and phospholipids. Nature (Lond.) 145, 549 (1940).Google Scholar
  575. Hack, M. H.: Rate of renewal of the acid-soluble organic phosphorus compounds in the organs and the blood of the rabbit. With a note on the duration of life of the red blood corpuscles. Kgl. danske Vidensk. Selsk., biol. Medd. 15, 1 (1940).Google Scholar
  576. Hevesy, G. v., L Hahn U. O. H. Rebbe: Eindringen von Phosphaten in Muskelzell. Kgl. danske Vidensk. Selsk., biol. Medd. 16, 8 (1941).Google Scholar
  577. Hevesy, G. v., J. J. Holst and A. Krogh: Investigations on the exchange of phosphorus in teeth using radioactive phosphorus as indicator. Kgl. danske Vidensk. Selsk., biol. Medd. 13, 34 (1937).Google Scholar
  578. Hevesy, G. v., K. H. Koster, G. Smrensen, E. Warburg u. K. Zerahn: The red corpuscle content of the circulating blood determined by labeling the erythrocytes with radio-phosphorus. Acta med. stand. (Stockh.) 116, 561 (1944).Google Scholar
  579. Hevesy, G. v., H. B. Levi and O. H. Rebbe: The origin of the phosphorus compounds in the embryo of the chicken. Biochemie. J. 32, 2147 (1938); 34, 532 (1940).Google Scholar
  580. Hevesy, G. v., and F. A. Paneth: A Manual of Radioactivity. New York and Oxford University Press 1938.Google Scholar
  581. Higgins, H.: The composition of bone and the function of the bone cell. Physiologic. Rev. 17, 119 (1937).Google Scholar
  582. Highberger, J. H.: Electron microscope observations of certain fibrous structures obtained from connective tissue extracts. J. Amer. Chem. Soc. 72, 3321 (1950).Google Scholar
  583. Highberger, J. H., J. Gross and F. O. Schmitt: Electron microscope observations of certain fibrous structures obtained from connective tissue extracts. J. Amer. Chem. Soc. 72, 3321 (1950).Google Scholar
  584. Highman, B.: Histochemical study of certain iron ore dusts. Bull. Internat. Assoc. Med. 32, 97 (1951).Google Scholar
  585. Hinsberg, K.: Blut. Iri Hoppe-Seyler U. Thierfelder, Bd. 5, S. 1. Heidelberg: Springer 1953.Google Scholar
  586. Hack, M. H.: Ham. Iri HOPPE-SEYLER u. THIERFELDER, Bd. 5, S. 183. 1953.Google Scholar
  587. Hinsberg, K., u. F. Bruns: Galle. In Hoppe-Seyler U. Thierfelder, Bd. 5, S. 390. 1953.Google Scholar
  588. Hinsberg, K., H. D. Cremer U. G. Schmidt: Faeces. In Hoppe-Seyelr U. Thierfelder, Bd. 5, 1953.Google Scholar
  589. Hinsberg, K., u. W. GEINrrz: Konkremente. In Hoppe-Seyler U. Thierfelder, Bd. 5, S. 427. 1953.Google Scholar
  590. Hintzsche, E.: Das Aschenbild tierischer Gewebe und Organe. Erg. Anat. 32 (1938).Google Scholar
  591. Hirsch, G. C.: Der Kalk, seine Ablagerung, Morphologie und osmotische Lösung bei Gastro-poden. Zool. Jb., Abt. allg. Zool. u. Physiol. 36, 199 (1917).Google Scholar
  592. Hack, M. H.: Weg des resorbierten Eisens und des phagozytierten Karmins bei Murex. Z. vergl. Physiol. 2, 1–22 (1923).Google Scholar
  593. Hack, M. H.: Dynamik organischer Strukturen. Roux’ Arch. 117, 511 (1929).Google Scholar
  594. Hack, M. H.: Theory of fields of restitution with special reference to secretion. Biol. Rev. Cambridge Philos. Soc. 6, 88–131 (1931). Form-und Stoffwechsel der GOLGI-Körper. Protoplasma-Monogr. Berlin 1939.Google Scholar
  595. Hack, M. H.: Nahrung, Atmung, Stoffwechsel. Handbuch der Biologie, Bd. 5. Darmstadt 1953.Google Scholar
  596. Hirsch, G. C., u. L. H. Bretschneider: Ascaris, Adsorption von Fe durch GoLGI-Körper. Protoplasma (Berlin) 29, 9–30 (1937).Google Scholar
  597. Hirschman, A., A. E. Sobel, B. Kramer and J. Fankuchen: An X-ray diffraction study of high phosphate, bones. J. of Biol. Chem. 171, 285 (1947).Google Scholar
  598. Hirschmann, H.: Metallanalysen in Gallensteinen. Inaug.-Disc. Basel 1934.Google Scholar
  599. Hodge, H. C.: The role of exchange in calcium and phosphate adsorption by the calcified tissues. Metabolic Interrelations, S. 49. New York: Macy Foundation 1949.Google Scholar
  600. Hodge, H. C., M Falkenheim and E. Emery: Ca exchange in bone using Ca45 in vitro. Federat. Proc. 6, 262 (1947).Google Scholar
  601. Hodge, H. C., G. van Huyzen, J. F. Bonner and S. N. van Voorhis • The adsorption of phosphates at forty degrees by enamel, dentin, bone, and hydroxyapatite as shown by the radioactive isotope. J. of Biol. Chem. 138, 451 (1941).Google Scholar
  602. Hodges, R. M., N. S. Macdonald, R. Nusbaum, R. Stearns, F. Ezmirlian, P. Spain and C. Macarthur: The strontium content of human bones. J. of Biol. Chem. 185, 519 (1950).Google Scholar
  603. Hodgman, C. D.: Handb of Chemistry and Physics, 35. Aufl. Cleveland: Chem. Rubber Publ. Co. 1952.Google Scholar
  604. Höber, R., D. J. Hitchcock, J. B. Bateman, D. R. Goddard and W. O. Fenn: Physical Chemistry of Cells and Tissues. Philadelphia: Blakiston 1948.Google Scholar
  605. Hoff-Jorgensen, E.: The influence of phytic acid on the absorption of calcium and phosphorus. Biochemie. J. 40, 189 (1946).Google Scholar
  606. Hoffmann, J.: Uran. Wien. tierärztl. Mschr. 28, 561 (1941).Google Scholar
  607. Hogben, L., and E. Charlfs • Changes in blood calcium following injection of anterior lobe extracts. J. of Exper. Biol. 9, 139 (1932).Google Scholar
  608. Hodge, M. J.: A study of adult human brain cells grown in tissue cultures. Amer. J. Anat. 93, 397 (1953).Google Scholar
  609. Hokin, L. E.: The role of ribonucleic acides in amylase secretion by pancreas slices. Biochem. et Biophysica Acta 8, 225 (1952).Google Scholar
  610. Holmgren, H., and A. Svanborg: Variations on the acid and alkaline phosphatase activity in the livers of white rats during the 24-hours period. Acta med. stand. (Stockh.) 137, 187 (1950).Google Scholar
  611. Holier, H., and SI-off-LI: Determination and properties of hosphoamidase. C. r. Labor. Carlsberg, Sér. Chini. 27, 393 (1951).Google Scholar
  612. Hoppe-Seyler U. Trierfelder: Handbuch der Physiologisch-und Pathologisch-Chemischen Analyse für Ärzte, Biologen und Chemiker, 10. Aufl. von LANG, LEHNARTZ u. SIE-BERT, Bd. 5. Heidelberg: Springer 1953.Google Scholar
  613. HORNING, H.: Microincineration and the inorganic constituents of cells, Bourne’s Cytology 1951.Google Scholar
  614. Hudson, P. B., and W. W. S. Butler: Enzyme acid phosphatase and its possible role in intermediary carbohydrate metabolism of the prostate glaud and its secretion in dog and man. J. of Uro. 63, 323 (1950).Google Scholar
  615. Huff, R. L., T. G. Hennessey, R. E. Austin, J. F. Garcia, B. M. R. Berts and J. H. Lawrence: Plasma and red cell iron turnover studies in normal subjects and in patients having various hematopoietic disorders. J. Clin. Invest. 29, 1041 (1950).PubMedGoogle Scholar
  616. Huggins, C. The composition of bone and the function of the bone cell. Physiologic. Rev. 17, 119 (1937).Google Scholar
  617. Hughes, J. S., R. W. Trrus and B. L. Smiths: The increase in the calcium of hens’ blood accompanying egg production. Science (Lancaster, Pa.) 65, 264 (1927).Google Scholar
  618. Humphrey, G. F., and M. Robertson: The metabolism of the seminal vesicle of the guinea-pig. Austral. J. Exper. Biol. a. Med. Sei. 31, 131 (1953).Google Scholar
  619. Huseby, R. A., and C. P. Barnum: Investigation of the phosphoruscontaining constituents of centrifugally prepared fractions from mouse liver cell cytoplasm. Arch. of Biochem. 26, 187 (1950).Google Scholar
  620. Hutchinson, G. E.: Quart. Rev. Biol. 18, 1, 128, 242, 331 (1943).Google Scholar
  621. Hynes, M.: Iron metabolism. J. Clin. Path. 1, 57 (1948).PubMedGoogle Scholar
  622. Immers, J.: Chemical and histochemical demonstration of acid esters by acetic iron reagent. Exper. Cell. Res. 6, 127 (1954).Google Scholar
  623. Immers, J., Irving, L., and J. F. Manerey: Significance of chlorides in tissues and animals. Biol. Reviews 11, 287 (1936).Google Scholar
  624. Immers, J., Iwasiuge, K.: Beiträge zur Kenntnis der Eisenreaktion bei den apokrinen Schweißdrüsen der Achselhaut von Japanern. Arch. hist. jap. 2, 367 (1951).Google Scholar
  625. Immers, J., Iwasaki, S.: Golgi apparatus, alk. phosphatase, protein, liver cells of a fish during starvation. 2. Phosphatase. Fol. anat. jap. 24, 187 (1952).Google Scholar
  626. Immers, J.: Golgi apparatus, alk. phosphatase, protein of liver cells of a fish during starvation. 3. Protein. Fol. anat. jap. 25, 13 (1953).Google Scholar
  627. Jackson, C. M.: The Effects of Inanition and Undernutrition upon Growth and Structure. Philadelphia: P. Blakiston Son & Co. 1925.Google Scholar
  628. Jacoby, F.: The pancreas and alkaline phosphatase. Nature (Loud:) 158, 268 (1946).Google Scholar
  629. Jackson, C. M.: Differences on localization, by histochemical means, of alkaline phosphatase within the same organ of different experimental animals. J. of Physiol. 105 (1946).Google Scholar
  630. Jackson, C. M.: Use of the phosphatase reaction in a method of demonstrating bile capillaries in rats. J. of Physiol. 106 (1947).Google Scholar
  631. Janssen, B. C. P.: Nederlands Leerboek der Physiologie, Bd. 4, S. 183. 1940.Google Scholar
  632. Jeener, R.: Liens de phosphatase alcaline avec les nucléoprotéides du noyeau cellulaire et des granules cytoplasmiques. Experientia (Basel) 2, 458 (1946).Google Scholar
  633. Jackson, C. M.: Acides nucléiques et phosphatases au cours de phénomènes de croissance provoqués par l’oestradiol et la prolactine. Biochim. et Biophysica Acta 2, 439 (1948).Google Scholar
  634. Johansen, D. A.: Plant Microtechnique. New York: McGraw-Hill 1940.Google Scholar
  635. Jomlin, J. M.: Physical Biochemistry. New York: Paul B. Hoeber 1949.Google Scholar
  636. Johnstone, F. A., TH. J. Mcmillian and E. R. Evans: J. Nutrit. 42, 285 (1950).Google Scholar
  637. Jones, H. B., J. L. Chaikoff and J. H. Lawrence: Amer. J. Canc. 40, 243 (1940).Google Scholar
  638. Jackson, C. M.: Phosphorus metabolism of the soft tissues of the normal mouse as indicated by radioactive phosphorus. Amer. J. Canc. 40, 235 (1940).Google Scholar
  639. Jones, H. J.: Personal communication in: Radioactive indications, G. v. Hevesy, New York: Interscience Pub. 1948.Google Scholar
  640. Jones, O. P.: Effet d’une alimentation riche en fer. Rev. d’Hématol. 5, 618 (1950).Google Scholar
  641. Jorio, A., and J. P. Lussier: Ca45. Rev. canad. de Biol. 10, 175 (1951).Google Scholar
  642. Josephs, H. W.: Studies of iron metabolism and the influence of copper. J. of Biol. Chem. 96, 559 (1932).Google Scholar
  643. Jungner, G.: The importance of bivalent ions for the aggregate molecular weight of sodium thymonucleate in aqueous solution. Acta chem. scand. (Kobenh.) 5, 168 (1951).Google Scholar
  644. Junqueira, L C U • Alkaline and acid phosphatase distribution in normal and regenerating tadpole tails. J. of Anat. 84, 369 (1950).Google Scholar
  645. Jackson, C. M.: Histological and histochemical observations on “working” and “resting” mice submaxillary glands. Exper. Cell. Res. 2, 327 (1951).Google Scholar
  646. Junqueira, L. C. U., M. Fajer, M. Rabinovitch and L. Frankenthal: Biochemical and histochemical observations on the sexual dimorphism of mice submaxillary glands. J. Cellul. a. Comp. Physiol. 34, 129 (1949).Google Scholar
  647. Kabat, A., and J. Furth: A histochemical study of the distribution of alkaline phosphatase. Amer. J. Path. 17, 303 (1941).PubMedGoogle Scholar
  648. Kalckar, H. M.: The nature of energetic coupling in biological syntheses. Chem. Rev. 28, 71 (1941).Google Scholar
  649. Kabat, A., and J. Furth: The chemistry and metabolism of the compounds of phosphorus. Annual Rev. Biochem. 14, 283 (1945).Google Scholar
  650. Kamen, M. D.: Isotopes. Annual Rev. Biochem. 16, 631 (1947).Google Scholar
  651. Kabat, A., and J. Furth: Radioactive Tracers in Biology, 2. Aufl. New York: Academic Press 1951.Google Scholar
  652. Kaplan, N. O., and D. M. Greenberg: Effect of starvation and ageing on the acid-soluble phosphate components of the liver. Proc. Soc. Exper. Biol. a. Med. 57, 130 (1944).Google Scholar
  653. Kar, A. B., and A. Glosch: Hormonal modification of alkaline phosphatase in the testis. Proc. Nat. Inst. Sci. India 18, 197 (1952).Google Scholar
  654. Karczmar, A. G., and G. G. Berg: Alkaline phosphatase in amputated forelimbs of larval urodeles. Anat. Rec. 106, 111 (1950).Google Scholar
  655. KAY, H. D.: Changes in phosphoric ester content of the red blood cells and the liver in experimental rickets. J. of Biol. Chem. 99, 85 (1932/33).Google Scholar
  656. Kabat, A., and J. Furth: Chemistry and metabolism of the compounds of phosphorus. Annual Rev. Biochem. 1, 187 (1932); 3, 133 (1934).Google Scholar
  657. Kehoe, R. A., J. Cholak and R. V. Story: Manganese, lead, tin, aluminium, copper, and silver in normal biological material. J. Nutrit. 20, 85 (1940).Google Scholar
  658. Kempson, D. A., O. L. Thomas and J. R. Baker: Contrast microscopy. Quart. J. Microsc. Sci. 89, 351 (1948).Google Scholar
  659. King, A. B., and J. M. Waghelstein: Calcification of the pancreas. Arch. Int. Med. 69, 165 (1942).Google Scholar
  660. Kinsey, V. E.: A unified concept of aqueous humor dynamics and the maintenance of intraocular pressure. An elaboration of the secretion-diffusion theory. Arch. of Ophthalm. 44, 215 (1950).Google Scholar
  661. Kinsey, V. E., B. Jackson and T. L. Terry: Development of secretory function of ciliary body in the rabbit-eye. Arch. of Ophthalm. 34, 415 (1945).Google Scholar
  662. Kirk, P. L.: Quantitative Ultramicroanalysis. New York: John Wiley & Sons, Inc. 1950.Google Scholar
  663. Kitiyakara, A., and J. W. Harman: The cytological distribution in pigeon skeletal muscle of enzymes acting on phosphorylated nucleotides. J. of Exper. Med. 97, 553 (1953).Google Scholar
  664. Kleiber, M., M. D. Boelter and D. M. Greenberg: Fasting catabolism and food utilization of calcium-deficient rats. J. Nutrit. 19, 517 (1940).Google Scholar
  665. Klein, G. P.: Arch. wiss. Bot. 2, 497 (1926).Google Scholar
  666. Klemperer, P.: Pathologic anatomy and biology. Hawaii Med. J. 8, 25 (1948).Google Scholar
  667. Kochakian, C. D.: The effect of various steroid hormones on the “alkaline” and “acid” phosphatases, of the kidney of the mouse. Amer. J. Physiol. 145, 118 (1945).Google Scholar
  668. Koenig, V. L., and R. G. Gustavson: The determination of iodine in rat thyroids. Arch. of Biochem. 7, 41 (1945).Google Scholar
  669. Kohler, G. O., C. A. Elvehjem and E. B. Hart: Bipyridine method for available iron. J. of Biol. Chem. 113, 49 (1936).Google Scholar
  670. Koller, F., u. A. Zuppinger: Die alkalische Serumphosphatase in der Tumordiagnostik. Oncologia (Basel) 2, 98 (1949).Google Scholar
  671. Komarov, S. A., G. O. Langstroth and D. R. McRAE: The secretion of crystalloids and protein material by the pancreas in response to secretin administration. Canad. J. Res., Set. D Zool. Sci. 17, 113 (1939).Google Scholar
  672. Kosman, A. J., J. W. Kaulbersz and S. Freeman• The secretion of alkaline phosphatase by the dog’s intestine. Amer. J. Physiol. 138, 236 (1943).Google Scholar
  673. Kritzler, R. A., and J. Beaubien: Phosphatase activity of liver in obstructive and hepatocellular jaundice. Amer. J. Path. 25, 1079 (1949).PubMedGoogle Scholar
  674. KROGH, A.: Active absorption of chlorides. Skand. Arch. Physiol. (Berl. u. Lpz.) 76, 60 (1937).Google Scholar
  675. Kabat, A., and J. Furth: Osmotic Regulations in aquatic Animals. Cambridge 1939.Google Scholar
  676. Kabat, A., and J. Furth: The active and passive exchanges of inorganic ions through the surfaces of living cells and through living membranes generally. Proc. Roy. Soc. Lond., Ser. B 133, 140 (1946).Google Scholar
  677. Krugelis, E. J.: Properties and changes of alkaline phosphatase activity during amphibian development. C. r. Tray. Labor. Carlsberg, Sér. Chim. 27, 273 (1950).Google Scholar
  678. Kruszynski, J.: Neue Ergebnisse cytochemischer Untersuchungen bei Mikroveraschung von Epithel-, Muskel-und Nervenzellen. Z. Zellforsch. 28, 35 (1938).Google Scholar
  679. Krutschakowa, F. A.: Salze in Muskeln des Igels. Biochemisches J. (Kiew) 16, 505 (1940).Google Scholar
  680. Kugler, O. E.: Ether soluble lipoid phosphorus, lecithin and cephalin distribution in the development of the chick. Amer. J. Physiol. 115, 287 (1936).Google Scholar
  681. Kabat, A., and J. Furth: Acid soluble phosphorus in the developing hen’s egg. J. Cellul. a. Comp. Physiol. 23, 69 (1944).Google Scholar
  682. Kabat, A., and J. Furth: Acid soluble phosphorus in the amniotic and allantoic fluids of the developing chick. J. Cellul. a. Comp. Physiol. 25, 155 (1945).Google Scholar
  683. Killer, O. E., and M. L. Birkner: Histochem. observ. of alkaline phosphatases in the integument, gastrolith sac, digestive gland and nephridium of the crayfish. Physiologic. Zool. 21, 105 (1948).Google Scholar
  684. KUNKEL, H O, and P. B. PEARSON: Magnesium in the nutrition of the rabbit. J. Nutrit. 36, 657 (1948).PubMedGoogle Scholar
  685. Kurbatov, J. D.: High concentrations of radium and mesothorium J in nature and regularity of their migration. J. Physic. Chem. 38, 521 (1934).Google Scholar
  686. Kurbatov, J. D., and M. L. Poor,: Radioactive isotopes for the study of trace elements in living organismus. Chem. Rev. 32, 231 (1943).Google Scholar
  687. Kurbatov, M. H., and J. D. Kurbatov: Target chemistry of zirconium and yttrium; isolation of Zr89 in pure state. J. Chem. Physics 13, 208 (1945).Google Scholar
  688. Kurbatov, M. H., G. B. Woo]) and J. D. Kurbatov: Application of the mass law to adsorption of divalent ions on hydrous ferric oxide. J. Chem. Physics 19, 258 (1951).Google Scholar
  689. Kabat, A., and J. Furth: Isothermal adsorption of cobalt from dilute solutions. J. Physic. a. Colloid Chem. 55, 1170 (1951).Google Scholar
  690. Kurbatov, M. H., F.-C. YU and J. D. Kurbatov: Target chemistry of cesium; isolation of Ba133’ 134 J. Chem. Physics 16, 87 (1948).Google Scholar
  691. Kuster, E.: Ergebnisse und Aufgaben der Zellmorphologie. Dresden: Theodor Steinkopff 1942.Google Scholar
  692. Kutscher, W., u. H. Wüst: Nebennierenrinde und alkalische Phosphatase. HoppeSeylers Z. 273, 235 (1942).Google Scholar
  693. Kutsky, P. B.: Phosphate metabolism in the early development of Rana pipiens. J. of Exper. Zool. 115, 429 (1950).Google Scholar
  694. Kuttner, T., and L. Lichtenstein: Micro colorimetric studies. 3. Estimation of organically bound phosphorus. A system of analysis of phosphorus compounds in blood. Biol. Chem. 95, 661 (1932).Google Scholar
  695. Lacassagne, A., et J. S. Lattes: Méthode auto-histo-radiographique pour la détect ion dans les organes du polonium injecté. C. r. Acad. Sci. Paris 178, 488 (1924).Google Scholar
  696. La Croix, P.: Orientation des recherches récentes sur l’ostéogenèse. Presse méd. 1949, 1177.Google Scholar
  697. Lacassagne, A., et J. S. Lattes: Lorganisation des Os, Bd. 1. Liège: Desoer; Paris: Masson & Cie. 1949.Google Scholar
  698. Lagerstedt, S., and Stenram: Selective alkaline phosphatase activity within the epithelia of the small intestine and kidney in rat. Acta anat. (Basel) 10, 23 (1950).Google Scholar
  699. Lajtha, L. G.: Isotope uptake of individual cells. Exper. Cell Res. 3, 696 (1952).Google Scholar
  700. Landström, H., T. O. Caspersson u. G. Wohlfahrt: Über den Nukleotidumsatz der Nervenzelle. Z. mikrosk.-anat. Forsch. 49, 534 (1941). LANG, K.:, ermediärer Stoffwechsel. Heidelberg: Springer 1952.Google Scholar
  701. Lang, K., u. R. Schoen: Ernährung. Die Physiologie, Pathologie, Therapie. Bearb. von 12 Verfassern. 1952.Google Scholar
  702. Lansing, A. J., T. B. Rosenthal and M. D. Kamen • The effect of age on calcium binding in mouse liver. Arch. of Biochem. 20, 125 (1949). LASZT, L., u. L. DELLA TORRE: P, Res. Monosacch. Schweiz. med. Wschr. 1941, 1416.Google Scholar
  703. Lawrence, J. H.: Calcium, radioautography. Amer. J. Roentgenol. 42, 283 (1942).Google Scholar
  704. Lacassagne, A., et J. S. Lattes: The clinical use of radioactive isotopes. Bull. New York Acad. Med. 26. 639 (1950).Google Scholar
  705. Lawrence, J. K., and J. G. Hamilton: Advances in Biological and Medical Physics, Bd. 1. New York: Acad. Press 1948.Google Scholar
  706. Lea, D E • Actions of Radiations on Living Cells. Cambridge: University Press 1946.Google Scholar
  707. Leaf, A., and A. A. Camara #x2022; Renal tubular secretion of potassium in man. J. Clin. Invest. 28, 1526 (1949).Google Scholar
  708. Leblond, C. P.: Behavior of radioiodine in resting and stimulated thyroids. Anat. Rec. 88, 285 (1944).Google Scholar
  709. Iodine metabolism. Adv. Biol. a. Med. Physics 1 (1948).Google Scholar
  710. Leblond, C. P., and J. Gross: Thyroglobulin formation in the thyroid follicle visualized by coated autograph technique. Endocrinology 43, 306 (1948).PubMedGoogle Scholar
  711. Leblond, C. P., W. L. Percrval and J. Gross utographic localisation of radio-iodine in stained sections of thyroid glands by coating with photographic emulsion. Proc. Soc. Exper. Biol. a. Med. 67, 74 (1948).Google Scholar
  712. Leblond, C. P., C. E. Stevens and R. Bogoroch: Histological localization of newly-formed desoxyribonucleic acid. Science (Lancaster, Pa.) 108, 531 (1948).Google Scholar
  713. Leblond, C. P., G. W. W. Wilkinson, L. F. BÉlanger and J. Robichon: Radio-autographic visualization of bone formation in the rat. Amer. J. Anat. 85, 289 (1950).Google Scholar
  714. Lehnartz, E.: Chemische Physiologie, 10. Aufl. Heidelberg: Springer 1952.Google Scholar
  715. Leschke, E.: Histophysiologie der Niere. Z. klin Med. 81 (1914).Google Scholar
  716. Letterer, E., u. F. Büchner: Allgemeine Pathologie des Stoffwechsels. Fiat Rev. 70, 4 (1948).Google Scholar
  717. Levi, G.: Trattato di Histologia, 3. Aufl. Torino 1946.Google Scholar
  718. Levine, C., and E. Chargaff: Phosphatide composition in different liver cell fractions. Exper. Cell. Res. 3, 154 (1952).Google Scholar
  719. Levine, M. D., P. S. Rubin, R. H. Follis jr. and J. E. Howard: Histochem. studies on calcinosis universalis with respect to the possible relationship between normal and pathological calcification. Metabolic Interrelations, S. 41. New York: Macy Foundation 1949.Google Scholar
  720. LIERKE, R. L., G. CULLEN and W. D. AMSTRONG: Studies on the excretion and distribution of radioactive calcium. Metabolic Interrelations, S. 73. Ediort Reifenstein, New York: Macy Foundation 1949.Google Scholar
  721. Lilienfeld u. Monti: Z. physiol. Chem. 17 (1893).Google Scholar
  722. Lacassagne, A., et J. S. Lattes: Z. wiss. Mikrosk. 9, 3 (1893).Google Scholar
  723. Lillie, R. D.: On absorption of iron by tissue sections. Bull. Internat. Assoc. Med. Mus. 30, 91 (1949).Google Scholar
  724. Lillie, R. D.: Histopathologic Technic. Philadelphia: lakiston Son & Co. 1950.Google Scholar
  725. Decalcification of bone. Bull. Internat. Assoc. Med. Mus. 32, 83 (1951).Google Scholar
  726. Lindahl, O.: On the chlorine content of human muscle and skeletal tissue with spec. refer. to the degeneration of cartilage. Acta orthopaed. stand. (Kebenh.) 18, 346, 477 (1949).Google Scholar
  727. Lindberg, N. O., and L. Ernster: The turnover of radioactive phosphate injected into the subarachnoid space of the brain of the rat. Biochemie. J. 46, 43 (1950).Google Scholar
  728. Linderström-Lang, K., and K. R. Mogensen: Histological control of histochemical observations. C. r. Tray. Labor. Carlsberg, Sér. Chim. 23, 27 (1938).Google Scholar
  729. Lindner, R., u. P. L. Kirk• Determination of calcium. Mikrochem. 22, 291 (1937).Google Scholar
  730. Lindsay, E., and R. Craig: The distribution of radiophosphorus in wax moth, mealworm, cockroach and firebat. Ann. Entomol. Soc. Amer. 35, 50 (1942).Google Scholar
  731. Lintzel, W.: Eisenstoffwechsel. Erg. Physiol. 31 (1931). Biochem. Z. 263, 173 (1933).Google Scholar
  732. Lipmann, F.: Harvey Lect. 44, 99 (1949).Google Scholar
  733. Lison, L.: 1Jtude et réalisation d’un photomètre à l’usage histologique. Acta anat. (Basel) 10, 233 (1950).Google Scholar
  734. Lacassagne, A., et J. S. Lattes: Histochimie et Cytochimie animales, 2. Aufl. Paris 1953.Google Scholar
  735. Little, A. G., M. H. Power and E. G. Wakefield • Absorption and excretion of iron. Ann. Int. Med. 23, 627 (1945).Google Scholar
  736. Logan, M. A.: Recent advances in the chemistry of calcification. Physiologic. Rev. 20, 522 (1940).Google Scholar
  737. Lohmann, K.: The chemistry and metabolism of the compounds of phosphorus. Annual Rev. Biochem. 7, 125 (1938).Google Scholar
  738. Long, M. E., and E. T. Engle: C•ytochemistry of the human testis. Ann. New York Acad. Sci. 55, 619 (1952).Google Scholar
  739. Loreti, F.: Distribution e natura chimica delle ceneri e delle sostanze carboniose nelle fibre muscolari striate degli arti degli Insetti. Z. Zellforsch. 31, 568 (1941).Google Scholar
  740. Loring, H. S.: The biochemistry of the nucleic acids, purines, and pyrimidines. Annual Rev. Biochem. 13, 295 (1944).Google Scholar
  741. Louyot, P.: Le Sel en Biologie. Paris: Masson & Cie. 1949.Google Scholar
  742. Loveless, A., and J. F. Danielli• Dye phosphate, alkaline phosphatase. Quart. J. Microsc. Sci. 90, 57 (1949).Google Scholar
  743. Lowry, O. H.: Electrolytes in the Cytoplasm. Biol. Symposia (Lancester, Pa.) 10, 233 (1943).Google Scholar
  744. Lowry, O. H., and J. A. Lopez: The determination of inorganic phosphate in the presence of labile phosphate esters. J. of Biol. Chem. 162, 421 (1946).Google Scholar
  745. Lundsteen, E., and E. Vermeiiren: Micromethods for the estimation of phosphatases in blood plasma and inorganic phosphorus in blood. C. r. Tray. MACCARDLE, R. C., abor. Carlsberg, Sér. Chim. 21, 147 (1936).Google Scholar
  746. Maccardle, R. C.: Calcium deposits in nerve cells after injections of urea and cholesterol, in the rat. Anat. Rec. 67, 81 (1936).Google Scholar
  747. Maccardle, R. C.: Histochemistry of pemphigus lesions. Arch. of Dermat. 47, 517 (1943).Google Scholar
  748. Maccardle, R. C.: and F. Engman sen. and jr. Mineral changes in neurodermatitis. Revealed by microincineration. Arch. of Dermat. 47, 335, 517 (1943).Google Scholar
  749. Maengwyn-Davies, G. D., and J. S. Friedenwald: Histochemical studies of alkaline phosphatases in the tissues of the rat using frozen sections. J. Cellul. a. Comp. Physiol. 36, 421 (1950).Google Scholar
  750. Majno, G., u. CH. Rouiller• Alkalische Phosphatase im Knochengewebe. Virchows Arch. 321, 1 (1951).PubMedGoogle Scholar
  751. Makarow, P.: Morphologie der Eiseneinschlüsse in der Zelle. Z. Zellforsch. 19, 28 (1933).Google Scholar
  752. Manly, M. L., and W. F. Bale: The metabolism of inorganic phosphorus of rat bones and teeth as indicated by the radioactive isotope. J. of Biol. Chem. 129, 125 (1939).Google Scholar
  753. Manly, M. L., H. C. Hodge and S. N. VAN Voorhis• Distribution of ingested phosphorus in bone and teeth of a dog, shown by radioactive isotope. Proc. Soc. Exper. Biol. a. Med. 45, 70 (1940).Google Scholar
  754. Manly, R. S.: A list of micromethods for the determination of calcium and phosphate. Mikrochem. 27, 145 (1939).Google Scholar
  755. Manly, R. W., H. C. Hodge and M. L. Manly: The relation of the phosphorus turnover of the blood to the mineral metabolism of the calcified tissues as shown by radioactive phosphorus. J. of Biol. Chem. 134, 293 (1940).Google Scholar
  756. Mann, W., W. F. Bale, H. C. Hodge and S. L. Warren: Jodine by the radioisotope. J. of Pharmacol. 95, 12 (1949).Google Scholar
  757. Mannheimer, L. H., and A. M. Seligman: Improvement in the method for the histochemical demonstration of alkaline phosphatase and its use in a study of normal and neoplastic tissues. J. Nat. Canc. Inst. 9, 181 (1948).Google Scholar
  758. Marchant, J • Alkaline phosphatase activity in normal and degenerated peripheral nerves of the rabbit. J. of Anat. 83, 227 (1949).Google Scholar
  759. Marinelli, L. D., and R. Hill • Radioautography. Amer. J. Roentgenol. 59, 396 (1948).Google Scholar
  760. Marshak, A., and F. Calvet: P32 in cell constituents, rabbit, liver. J. Cellul. a. Comp. Physiol. 34, 451 (1949).Google Scholar
  761. Marshak, A., and H. J. Vogel: P32 in nucleotides of nuclear pentosenucleic acid of rabbit liver. J. Cellul. a. Comp. Physiol. 36, 97 (1950).Google Scholar
  762. Marshak, A., and A. O. Walker* Transfer of 1332 from intravenous chromatin to hepatic nuclei. Amer. J. Physiol. 143, 235 (1945).Google Scholar
  763. Martin, B. F.: A method for demonstrating the presence of alkaline phosphatase and glycogen in the same section. Stain Technol. 24, 215 (1949).PubMedGoogle Scholar
  764. Maccardle, R. C.: Alkaline phosphatase in the large intestine. J. of Anat. 85, 140 (1951).Google Scholar
  765. Martin, B. F., and F. Jacoby: Diffusion phenomenon complicating the histochemical reaction for alkaline phosphatase. J. of Anat. 83, 351 (1949).Google Scholar
  766. Marton, L., and P. H. Abelson: Tracer micrography. Science (Lancaster, Pa.) 106, 69 (1947).Google Scholar
  767. Maxwell, M. L.: The calcium phosphorus metabolism of normal young women and the effect of vitamin D on the utilization of these elements. Diss. Univ. Chicago 1942.Google Scholar
  768. Mccallion, D., and J. L. Scott: Absorption and distribution of iron in the frog. Canad. J. Res., Sect. D Zool. 28, 119 (1950).Google Scholar
  769. Mccance, R. A., and E. M. Winnowson: Absorption and excretion of iron. J. of Physiol 94, 148 (1938).Google Scholar
  770. Maccardle, R. C.: The fate of strontium after intravenous administration to normal persons. Biochemie. J. 88, 523 (1939).Google Scholar
  771. Maccardle, R. C.: Iron. J. of Physiol. 94, 148 (1938).Google Scholar
  772. Maccardle, R. C.: Nature (Lond.) 152, 326 (1943).Google Scholar
  773. M0collum, E. V., E.ORENT-KEILES and H. G. DAY: The newer Knowledge of Nutrition, 5. Aufl. New York: Macmillan & Co. 1939.Google Scholar
  774. Mccoy, R. H.: Dietary requirements of the rat. In J. R. GRIFFITHS and E. J. FARRIS, The Rat. Philadelphia 1942.Google Scholar
  775. Mclean, F. C., and W. BLooM: Calcification and ossification. Calcification in normal growing bone. Anat. Rec. 78, 333 (1940).Google Scholar
  776. Mcmanus, J. F. A.: Aspects of histochemistry. Bull. Internat. Assoc. Med. Mus. 28, 73 (1948).Google Scholar
  777. Mcmanus, J. F. A., and R. W. Mowry: Alkaline phosphatase in some abnormal human kidneys. Bull. Internat. Assoc. Med. Mus. 28, 80 (1948).Google Scholar
  778. Mcmillen, A., and G. H. Scott: Microincineration. Rev. Sci. Instrum. 8, 288 (1937).Google Scholar
  779. Mecham, D. K., and H. S. Olcott: J. Amer. Chem. Soc. 71, 3670 (1949).Google Scholar
  780. Mendelow, H., and J. B. Hamilton: Rapid freezing-dehydration of tissues. Anat. Rec. 107, 443 (1950).PubMedGoogle Scholar
  781. Menschix, Z.: The histochemical demonstration of phospholipids and unsaturated fatty acids in developing adipose tissue. Anat. Rec. 112, 156 (1952).Google Scholar
  782. Maccardle, R. C.: Nile blue histochemical method for phospholipids. Stain Technol. 28, 13 (1953).Google Scholar
  783. Menten, M. L., J. Junge and M. H. Green: Distribution of alkaline phosphatase in kidney following the use of histochemical azo dye test. Proc. Exper. Biol. a. Med. 57, 82 (1944).Google Scholar
  784. Menzies, G.: Further observations upon the oxyntic cells, with spec. refer. to acid phosphatase. Quart. J. Microsc. Sci. 93, 259 (1952).Google Scholar
  785. Maccardle, R. C.: Observations upon the recovery of oxyntic cells after prolonged dossage with pilocarpine or histamine. Quart. J. Microsc. Sci. 93, 385 (1952).Google Scholar
  786. Meyer, H.: Alkaline phosphatase activity in normal and injured livers of mice. Anat. Rec. 112, 58 (1952).Google Scholar
  787. Mezger, L.: Acid and alkaline phosphatase activity of the yolk sac of the developing chick embryo. Anat. Rec. 105, 90 (1949).Google Scholar
  788. Minamitami, S.: Cytological and cytochemical changes of liver cells of an osseous fish caused by the alteration of water temperature. 1. On alkaline and acid phosphatase. Okajimas Fol. anat. jap. 25, 19 (1953).Google Scholar
  789. Mitchell, H. H.: The Dietary Requirement of Calcium and its Significance. Paris: Hermann & Cie. 1939.Google Scholar
  790. Mitchell, H. H., T. S. Hamilton and W. T. Kaines: Ca. J. of biol. Chem. 178, 345 (1949).Google Scholar
  791. Mitchell, H. H., T. S. Hamilton, F. R. Steggerda and H. W. Bean: The chemical composition of the adult human body and its bearing on the biochemistry of growth. J. of Biol. Chem. 158, 625 (1945).Google Scholar
  792. Mitchell, H. H., and J. M. Smith: The effect of cocoa on the utilisation of dietary calcium. J. Amer. Med. Assoc. 129, 871 (1945).Google Scholar
  793. Mitchell, P. H.: A Textbook of Biochemistry. New York: McGraw-Hill Book Co. 1950.Google Scholar
  794. Moberger, G., L. Lindström and L. Andersson: Freeze-drying with a modified Glick-Malmström apparatus. Exper. Cell. Res. 6, 228 (1954).Google Scholar
  795. Mollerstrem, J., O. Linkberg and H. Holmgren: Apparatus for measuring radioactivity in histol. preparations. Acta anat. (Basel) 7, 244 (1949).Google Scholar
  796. Monnier, A. M.: Les bases physico-chimiques de l’action du calcium sur l’activité nerveuse. Arch. Sci. physiol. 3, 177 (1949).Google Scholar
  797. Montagna, W., and CH. R. Noback: Histochemical observations on the sebaceous glands of the rat. Amer. J. Anat. 81, 39 (1947).PubMedGoogle Scholar
  798. Montgomery, M. L., G. E. Sheline and J. L. Chaikoff: Elimination of sodium in pancreatic juice as measured by radioactive sodium. Amer. J. Physiol. 131, 578 (1941).Google Scholar
  799. Moog, F.: Localisations of alkaline and acid phosphatases in the early embryogenesis of the chick. Biol. Bull. 86, 51 (1944).Google Scholar
  800. Maccardle, R. C.,: Alkaline and acid phosphomonoesterase activity in chick embryo. J. Cellul. a. Comp. Physiol. 28, 197 (1946).Google Scholar
  801. Maccardle, R. C.,: Adenylpyrophosphatase in brain, liver, heart and muscle of chick embryos and hatched chicks. J. of Exper. Zool. 105, 209 (1947).Google Scholar
  802. Maccardle, R. C.: The functional differentiation of the small intestine. 1. The accumulation of alkaline phosphomonoesterase in the duodenum of the chick. J. of Exper. Zool. 115, 109 (1950).Google Scholar
  803. Maccardle, R. C.: The accumulation of phosphatase in the duodenum of mouse embryos and young mice. Anat. Rec. 108 (1950).Google Scholar
  804. Morse, Anna: Formic acid-sodium citrate decalcification and butyl alcohol dehydration of teeth and bones for sectioning in paraffin. J. Dent. Res. 24, 143 (1945).Google Scholar
  805. Morse, W. I.: Single cell autographs of bone marrow and blood from rats, using radioactive phosphorus. Amer. J. Med. Sci. 220, 522 (1950).PubMedGoogle Scholar
  806. Morton, M. E., J. Perlman and J. L. Chaixoff: Radioactive iodine as an indicator of the metabolism of iodine. 3. The effect of thyrotropic hormone on the turnover of thyroxine and diiodotyrosine in the thyroid gland and plasma. J. of Biol. Chem. 140, 603 (1941).Google Scholar
  807. Mowry, R. W.: Comparison of technical procedures for the histochemical preservation of alkaline phosphatase. Bull. Internat. Assoc. Med. Mus. 30, 95 (1949).Google Scholar
  808. MüLLER, J. H.: Über die Verwendung von künstlichen radioaktiven Isotopen zur Erzielung von lokalisierten biologischen Strahlenwirkungen. Experientia (Basel) 1, 199 (1945); 2 (1946).Google Scholar
  809. Mullins, L. J.: Localisation of radiophosphate in cells. Proc. Soc. Exper. Biol. a. Med. 64, 296 (1947).Google Scholar
  810. Muntwyler, E., S. Seifter and D. M. Hark-Ness: Intracellular composition of liver. J. of Biol. Chem. 184, 181 (1950).Google Scholar
  811. Needham, J.: Biochemistry and Morphogenesis. Cambridge: University Press 1942.Google Scholar
  812. D. M. Needham: On phosphorus metabolism in embryonic life. 1. Invertebrate eggs. J. of Exper. Biol. 7, 317 (1937).Google Scholar
  813. Neuxomm, S.: Fer, système réticulo-endothélial et échanges dermoépidermiques (Tissus normaux et cancéreux). Schweiz. allg. Path. 9, 160 (1946).Google Scholar
  814. Needham, J.: Acta anat. (Basel) 1, 411 (1946).Google Scholar
  815. Needham, J.: Contribution à l’étude du métabolisme du fer ionique. Schweiz. Z. allg. Path. 10, 517 (1947).Google Scholar
  816. Needham, J.: Contribution it l’étude des rapports entre le fer sérique et les protéines plasmatiques. Helvet. med. Acta 14, 453 (1947).Google Scholar
  817. Needham, J.: Larégulation physico-chimique de la sidérémie. Acta haematol. (Basel) 2, 213 (1949).Google Scholar
  818. Neumann, K.: Phosphatase-Aktivität. Naturwiss. 36, 89 (1949).Google Scholar
  819. Needham, J.: Über histochemischquantitative Phosphatasebestimmung. Verh. anat. Ges. 1951, 165.Google Scholar
  820. NEEDHAM, J.: Gefriertrockentechnik. Göttingen 1953.Google Scholar
  821. Neumann, W. F., V. DI Stefano and B. J. Murlyan: Ca45. J. of Biol. Chem. 193, 227 (1948).Google Scholar
  822. Neumann, W. F., R. W. Fleming, A. L. Dounce, A. B. Carlson, J. O’Leary and B. Mulryan: The distribution and excretion of injected uranium. J. of Biol. Chem. 173, 737 (1948).Google Scholar
  823. Newman, W., J. Feigin and A. Wolf: Histochemical studies on tissue enzymes. 4. Distribution of some enzyme systems which liberate phosphate at pH 9.2 as determined with various substrates and inhibitors; demonstration of 3 groups of enzymes. Amer. J. Path. 26, 257 (1950).PubMedGoogle Scholar
  824. Newman, W., E. Kabat and A. Wolf: Selective affinity of tissues for lead. Amer. J. Path. 26, 489 (1950).PubMedGoogle Scholar
  825. Newton, C.: Same aspects of the physiology of bone. Recent Advances in Physiology, 6. Aufl. London: Churchill 1939.Google Scholar
  826. Nicola, M. DE• Alkaline phosphatases and the cycle of nucleic acids in the gonads of some isopod crustaceans. Quart. J. Microscop. Sci. 90, 391 (1949).Google Scholar
  827. Needham, J.: Rapporto fra fosfatasi alcaline e metabolismo degli acidi nucleici nella spermatogenesi di alcuni lumbricidi. Sci. Genet. (Torino) 4, 41 (1951).Google Scholar
  828. Nicolaysen, R.: The absorption of calcium as a function of the body saturation with calcium. Acta physiol. scand. (Stockh.) 5, 200 (1943).Google Scholar
  829. Noback, C. R.: Localization of acid phosphatase in fibroblasts. Anat. Rec. 109, 71 (1951).PubMedGoogle Scholar
  830. Noddack, J., D. W. NODDACK: Schwermetalle der Meerestiere. Ark. zool. (Stockh.), Ser. A 32, Nr 4, 1 (1939).Google Scholar
  831. Norberg, B.: Zur Mikrophosphatidbestimmung im Blute. Biochem. Z. 269, 1 (1934).Google Scholar
  832. Needham, J.: Histo-and cytochemical determination of phosphorus. Acta physiol. scand. (Stockh.) 5, Suppl. 14 (1942).Google Scholar
  833. Norberg, B., u. T. Teorell: Eine einfache Mikrobestimmungsmethode für Phosphatide in Geweben und Blut. Biochem. Z. 264, 310 (1933).Google Scholar
  834. Novlxoff, A. B.: The validity of histochemical phosphatase methods on the intracellular level. Science (Lancaster, Pa.) 113, 320 (1951).Google Scholar
  835. Novrkoff, A. B., L. Hecht, E. Podber and J. Ryan: The dephosphorylation of adenosinetriphosphate. J. of Biol. Chem. 194, 153 (1952).Google Scholar
  836. Novikoff, A. B., L. Korson and H. W. Stater: Alkaline phosphatase activity in the Golgi substance of intestinal mucosa. Exper. Cell. Res. 3, 617 (1952).Google Scholar
  837. Novnioff, A. B., E. Podber and J. Ryan: Intracellular distribution of phosphatase activity in rat liver. Federat. Proc. 9, 210 (1950).Google Scholar
  838. Novikoff, A. B., V. R. Potter and G. A. LE Page: Phosphorylating glycolysis in the early chick embryo. J. of Biol. Chem. 173, 239 (1948).Google Scholar
  839. Nuckolls, J.: Lobular development and calcification in the tooth. J. California St. D. A. 17, 73, 105 (1941).Google Scholar
  840. Örstrom, A., u. O. Lindberg: Über den Kohlenhydratstoffwechsel bei der Befruchtung des Seeigeleies. Enzymologia 8, 367 (1940).Google Scholar
  841. Okamoto, K. M. Seno and A. Kato: P. Taishitzu Gaku Zasshi 13, 97 (1944).Google Scholar
  842. Okkels, H.: C. r. Soc. Biol. Paris 102, 1089 (1930).Google Scholar
  843. Örstrom, A., u. O. Lindberg: Some observations on the cytology of multinucleated giant cells. Golgi-apparatus and microincineration. Acta path. scand. (Kobenh.) 13, 383 (1936).Google Scholar
  844. Opie, E. L.: Osmotic systems. J. of Exper. Med. 87, 425 (1948).Google Scholar
  845. Orban, B.: Oral Histology and Embryology. St. Louis: C. V. Mosby Comp. 1944.Google Scholar
  846. Orban, B., H. SICHER and J. P. WEINMANN: Amelo-genesis. J. Amer. Coll. Dentists 10, 13 (1943).Google Scholar
  847. Orent-Keiles, E., and E. V. Mccollum: Mineral metabolism of rats on an extremely sodium-deficient diet. J. of Biol. Chem. 133, 75 (1940).Google Scholar
  848. Packer, D. M., and G. H. Scott: Incineration. J. Techn. Methods a. Bull. Int. Assoc. Med. Mus. 22, 85 (1942).Google Scholar
  849. Paff, G. H.: Influence of pa on growth of bone in tissue culture. Proc. Soc. Exper. Biol. a. Med. 68, 288 (1948).Google Scholar
  850. Palade, G. E.: Phosphatase. Arch. of Biochem. 30, 144 (1951).Google Scholar
  851. Palm, E.: On phosphate exchange between blood and eye. Experiments on entrance of radioactive phosphate into aqueous humour, anterior uvea and lens. Acta ophthalm. (Kobenh.) 1948, Suppl. 32.Google Scholar
  852. Packer, D. M., and G. H. Scott: The phosphate content of the vitreous body. Acta ophthalm. (Kobenh.) 27, 553 (1949).Google Scholar
  853. Panijel, J.: Étude cytochim. et biochim. de la gamétogenèse et de la fécondation chez la grenouille et l’ascaris. Contribution à l’étude du métabolisme des nucléoprotéines. Les problèmes de l’histochimie et la biologie cellulaire. (Etude critique des méthodes d’analyse histochimique.) Paris: Hermann 1951.Google Scholar
  854. Parpart, A. K.: Chemistry and Physiology of Growth. Princeton: University Press 1949.Google Scholar
  855. Parpart, A. K., and A. J. Dziemian • Red cell membrane. Cold Spring Harbor Symp. Quant. Biol. 8, 17 (1940).Google Scholar
  856. Partridge, M. H., and M. E. Shontz: Total and acid-soluble phosphorus in various tissues of chick embryos. Anat. Rec. 112, 70 (1952).Google Scholar
  857. Pearse, A. G. E., and J. L. Reis: The histochem. demonstration of a specific phosphatase (5-Nucleotidase). Biochemic. J. 50, 534 (1952).Google Scholar
  858. Pearson, P. B., J. A. Gray and R. Reiser: The calcium, magnesium and potassium contents of the serum. J. Anim. Sci. 8, 52 (1949).PubMedGoogle Scholar
  859. Pecher, C.: Biological investigations with radioactive calcium and strontium. Proc. Soc. Exper. Biol. a. Med. 46, 86 (1941).Google Scholar
  860. Packer, D. M., and G. H. Scott: J. Appl. Physics 12, 318 (1941).Google Scholar
  861. Pelc, S. R.: Autoradiographic technique. Nature (Lond.) 160, 749 (1947).Google Scholar
  862. Pelc, S. R., and A. Howard: Techniques of radio-autography and the application of the stripping-film methode to problems of nuclear metabolism. Brit. Med. Bull. 8, 132 (1952).PubMedGoogle Scholar
  863. Pelc, S. R., and F. G. Spear: Autoradiographs of ovian fibro-blasts in tissue culture made with P32. Brit. J. Radiol. 23, 287 (1950).PubMedGoogle Scholar
  864. Percival, W. L., and C. P. Leblond: Rapid exchange of the salts in a newborn. rat as demonstrated with radioactive phosphorus. Rev. canad. de Biol. 7, 217 (1948).Google Scholar
  865. Perlman, J, S Ruben and J. L. Chaikoff • The rate of formation and destruction of phospholipids in the fasting rat. J. of Biol. Chem. 122, 169 (1938).Google Scholar
  866. Peters, J. P., and D. D. VAN Slyke: Quantitative Clinical Chemistry, Bd. I. Interpretations. Baltimore: Williams & Wilkins Company 1931.Google Scholar
  867. Peters, R. A., G. H. Spray, L. A. Stocken, C. H. Collie, M. A. Grace and G. A. Wheatley: The use of British Anti-Lewisite containing radioactive sulphur for metabolism investigations. Biochemic. J. 41, 370 (1947).Google Scholar
  868. Peters, V. B., and L. B. Flexner: Biochemical and physiological differentiation during morphogenesis. 8. Quantitative morphologic studies on the developing cerebral cortex of the fetal guinea pig. Amer. J. Anat. 86, 133 (1950).PubMedGoogle Scholar
  869. Petrowa, W. W.: Mg-und Ca-Gehalt der Muskeln bei Mäusen. Bull. Biol. Méd. exper. URSS. 9, 187 (1940).Google Scholar
  870. Pettengill, O., and D. E. Copeland • Alkaline phosphatase activity in chloride cells of Fundulus heteroclitus and its relation to osmotic work. J. of Exper. Zool. 108, 235 (1948).Google Scholar
  871. Phil, A., and K. Bloch: The relative rates of metabolism of neutral fat and phospholipides in various tissus of the rat. J. of Biol. Chem. 183, 431 (1950).Google Scholar
  872. Plimmer, R H A, and R. Kaya: The distribution of phosphoproteins in tissues. Part. 2. J. of Physiol. 39, 45 (1909).Google Scholar
  873. Plimmer, R H A, and F. H. Scott: The transformations in the phosphorus compounds in the hen’s egg during development. J. of Physiol. 38, 247 (1909).Google Scholar
  874. Porrchard, J J • Alkaline phosphatase in the uterine epithelium of the rat. J. of Anat. 83, 10 (1949).Google Scholar
  875. Policard, A.: Microincinération. C. r. Assoc. Anat. 29, 463 (1934).Google Scholar
  876. Packer, D. M., and G. H. Scott: Méthode de la Micro-incinération. Paris: Hermann et Co. 1938.Google Scholar
  877. Packer, D. M., and G. H. Scott: Bases structurales et ultrastructurales de la microincinération. Mecanismes de formation des grains de cendre. Bull. Histol. Appl. 17, 81 (1940).Google Scholar
  878. Packer, D. M., and G. H. Scott: Précis d’Histologie physiologique, 4. Aufl. Paris: Doin et Cie 1941.Google Scholar
  879. Packer, D. M., and G. H. Scott: Micro-incineration. J. Roy. Microsc. Soc. 62, 25 (1942).Google Scholar
  880. Policard, A., et E. Martin: Micro-incinération. Bull. Histol. Appl. 10, 22 (1933).Google Scholar
  881. Policard, A., u. Hokkels• Mikroveraschung. In ABDERHALDENS Handbuch der biologischen Arbeitsmethoden, Bd. V/2, S. 1815. 1932.Google Scholar
  882. Policard, A., et D. Pillet: Microincinération. C. r. Soc. Biol. Paris 92, 272 (1925); 99, 85 (1926).Google Scholar
  883. Pommerenke, W. T., P. F. Hahn and W. F. T. Bale: Placenta, iron. Amer. J. Physiol. 137, 164 (1942).Google Scholar
  884. Popjak, G.: Synthesis of phospholipids in the foetus. Nature (Lond.) 160, 841 (1947).Google Scholar
  885. Packer, D. M., and G. H. Scott: Mechanism of absorption of inorganic phosphate from blood by tissue cells. Nature (Lond.) 166, 184 (1950).Google Scholar
  886. Pobjak, G., and M.-L. Beeckmans • Are phospholipins transmitted through the placenta ? Biochemic. J. 46, 99 (1950).Google Scholar
  887. Popjak, G., and H. Muir: In search of a phospholipin precursor. Biochemic. J. 46, 103 (1950).Google Scholar
  888. Porter, K. R., A. Claude and E. F. Fullam• Tissue culture and electron microscope. J. of Exper. Med. 81, 233 (1945).Google Scholar
  889. Porter, K. R., and F J Hall-Man: Significance of cell particulates as seen by electron microscopy. Ann. New York Acad. Sci. 54, 822 (1952).Google Scholar
  890. Porter, K. R., R. A. Neubauer, E. Fischer and N. Young: Muscle biopsy in the study of electrolyte changes, with partit. refer. to chronic renal disease. Trans. Amer. Clin. a. Climatol. Assoc. 62, 237 (1950).Google Scholar
  891. Porto, J., and A. D. Marenzi: Histological distribution of K in muscle. Rev. Soc. argent. Biol. 14, 483 (1938).Google Scholar
  892. Poulson, D. F., and V. T. Bowen: Organization and function of the inorganic constituents of nuclei. Exper. Cell. Res. Suppl. 2, 161 (1952).Google Scholar
  893. Poulson, D. F., V. T. Bowen, R. M. Hilse and A. C. Rubinson: The copper metabolism of Drosophila. Proc. Nat. Acad. Sei. 38, 912 (1952).Google Scholar
  894. Powell, J. F.: Iron metabolism. Quart. J. Med. 13, 19 (1944).Google Scholar
  895. Prenant, M.: Contributions it l’étude cytologique du calcaire. Quelques formations calcaires du conjonctif chez les Gastéropodes. Bull. Biol. 58, 33 (1924).Google Scholar
  896. Pritchard, J. J.: The distribution of alkaline phosphata se in the pregnant uterus of the rat. J. of Anat. 81, 352 (1947).Google Scholar
  897. Raadt, M. F. DE: Eisenstoffwechsel, klinische Beobachtungen über das Serum-Eisen. Diss. Utrecht 1942.Google Scholar
  898. Rabinovitch, M., and L. C. U. Junqueira• Cytochemical demonstration of „acid“ phosphatase in bone marrow smears. Science (Lancaster, Pa.) 107, 322 (1948).Google Scholar
  899. Raadt, M. F. DE: Influence of testosterone on nucleic acid phosphorus of rat seminal vesicale. Science (Lancaster, Pa.) 114, 551 (1951).Google Scholar
  900. Rabinovitch, M. H. A. Rothschild and L. C. U. Junqueira • Nucleic acid phosphorus in submaxillary glands of mice after duct ligation. J. of Biol. Chem. 194, 835 (1952).Google Scholar
  901. Rabinovitch, M., V. Valeri, H. A. Rothschild, S Camara, A. Sesso and L. C.U. Junqueira • Nucleic acid phosphorus of mouse pancreas after pilocarpine administration. J. of Biol. Chem. 198, 815 (1952).Google Scholar
  902. Ranaer, M.: Métabolisme du fer chez la femme enceinte. Rev. franç. Gynéc. 37, 258 (1942).Google Scholar
  903. Randall, H. T., D. V. Habif, J. S. Lockwood and S. G. Werner: Potassium deficiency in surgical patients. Surgery 26, 341 (1949).PubMedGoogle Scholar
  904. Rapoport, S., F. Leva and G. M. Guest: P, rat liver, starvation. J. of Biol. Chem. 149, 57 (1943).Google Scholar
  905. Raunich, L.: Variazioni dell’attività fosfotasica alcalina durante lo sviluppo di Rana. Atti Accad. naz. Lincei, Sec. 8, 13, 276 (1952).Google Scholar
  906. Rawlinson, H. E.: Iron deposition in spontaneous mammary tumors in dba mice. Acta Union internat. contre Cancer 6, 744 (1949).Google Scholar
  907. Raadt, M. F. DE: Iron stain, alveolar development, mouse mammary gland. Canad. J. Res., Sect. E Med. Sci. 28, 1 (1950).Google Scholar
  908. Rawlinson, H. E., and G. B. Pierce: Iron content as a quanti. tative measurement of the effect of previous pregnancies on the mammary glands of mice. Endocrinology 46, 426 (1950).PubMedGoogle Scholar
  909. Rawlinson, W. A.: Biological aspects of copper. J. Proc. Austral. Chem. Inst. 10, 21 (1943).Google Scholar
  910. Raynaud, J., et A. Soulairac • Répartition histochimique de l’activité phosphatasique dans la glande sousmaxillaire de la souris. Ann. d’Endocrin. 9, 188 (1949).Google Scholar
  911. Reifenstein jr., EDW. C.: Metabolic Interrelations. Josiah Macy Jr. Found. 1949, 1953.Google Scholar
  912. Rein, F. H.: Physiologie des Menschen, 9. Aufl. Heidelberg: Springer 1948.Google Scholar
  913. Reiner, J. M.: Inhibition of enzyme formation and nitrogen assimilation by arsenate. Arch. of Biochem. 19, 218 (1948).Google Scholar
  914. Rennels, E. G.: Alterations in the phospholipid content of adrenal cortical cells of the rat. Anat. Rec. 112, 78 (1952).Google Scholar
  915. Raadt, M. F. DE: An experimental study of cytoplamic inclusions in adrenal cortical cells of the immature rat. Anat. Rec. 112, 509 (1952).Google Scholar
  916. Raadt, M. F. DE: Localization of phospholipide in the rat hypophysis. Anat. Rec. 115, 659 (1953).Google Scholar
  917. Rheingold, J. J., and G. B. Wislocki: Histochemical methods applied to hematology. Blood 3, 641 (1948).PubMedGoogle Scholar
  918. Richterich, R.: Der histochemische Nachweis der alkalischen Phosphatase. Acta anat. (Basel) 15, 243 (1952).Google Scholar
  919. Rieser, P.: Excitability of muscle following intracellular decalcification. Arch. internat. Physiol. 60, 465 (1952).Google Scholar
  920. Riley, J. F., and J. M. Drennan: Alk. phosphatase, mast cells. J. of Path. 61, 245 (1949).Google Scholar
  921. Ring, J R • Changes in alkaline phosphatase activity of rat vaginal epithelium during the estrous cycle. Anat. Rec. 107, 121 (1950).Google Scholar
  922. Ring, J. R., and B. Levy: Changes in alkaline phosphatase activity of rat oral epithelium during the estrous cycle and in response to administered estrogen. J. Dent. Res. 29, 817 (1950).PubMedGoogle Scholar
  923. Ring, J. R., and C. Randall: Sweat glands of rat and their response to prolonged nervous stimulation. Anat. Rec. 99, 7 (1947).PubMedGoogle Scholar
  924. Rissel, E., u. G. Wiedemann• Klin. Wschr. 1940, 953.Google Scholar
  925. Rivier, J.-L., et H. Moginier: Relations entre le fer et le métabolisme cellulaire. Helvet. med. Acta 14, 458 (1947).Google Scholar
  926. Robertis, E. DE, W. W. Nowinsxy and T. A. Saez: General Cytology. Philadelphia u. London: W. B. Saunders Company 1949.Google Scholar
  927. Roberts, J. D.: Some features of the calcium metabolism of the shore crab (Carcinus maenas). Proc. roy. Soc. Lond., Ser. B 124, 162 (1937).Google Scholar
  928. Robertson, J. D.: The function of the calciferous glands of earthworms. J. of Exper. Biol. 13, 279 (1936).Google Scholar
  929. Raadt, M. F. DE: The anorganic composition of the body fluids of three marine invertebrates. J. of Exper. Biol. 16, 387 (1939).Google Scholar
  930. Raadt, M. F. DE: The function and metabolism of calcium in the Invertebrata. Biol. Rev. Cambridge Philos. Soc. 16, 106 (1941).Google Scholar
  931. Robison, R.: Chemistry and metabolism of compounds of phosphorus. Annual Rev. Biochem. 5, 181 (1936).Google Scholar
  932. Roddy, H.: Microincineration. Stain Technol. 16, 101 (1941).Google Scholar
  933. Roeder, D.: Stoffwechsel des Schmelzorgans mit Hilfe von radioaktivem Phosphor. Naturwiss. 34, 125 (1947).Google Scholar
  934. Roeder, F.: P32 im Nervensystem. Göttingen: Muster-Schmidt 1948.Google Scholar
  935. Romieu, M., A. Stahl et R. Seite: Les phosphatases alcalines dans l’hypophyse du chat et leur présence au niveau de l’appareil de Golgi des cellules de l’anthypophyse. Archives d’Anat. 34, 369 (1942).Google Scholar
  936. Ronkin, R. R.: The uptake of radioactive phosphate by the excised gill of the mussel Mytilus edulis. J. Cellul. a. Comp. Physiol. 35, 241 (1950).Google Scholar
  937. Raadt, M. F. DE: Effect of inhibitors on phosphate uptake in excised gills of the mussel (Mytilus edulis). Proc. Soc. Exper. Biol. a. Med. 73, 44 (1950).Google Scholar
  938. RosE, M. S., and H. J. Hubbel: The influence of sex on iron utilization in rats. J. Nutrit. 15, 91 (1938).Google Scholar
  939. Rosenfeld, J., and C. A. Tonies: Distribution of Co“, Cu64, and Zn6e in the cytoplasm and nuclei of tissues. J. of Biol. Chem. 191, 339 (1951).Google Scholar
  940. Ross, M. H., and J. O. Ely: Neutron effects on alkaline phosphatase of rat intestine. Protein. Amer. J. Roentgenol. 62, 718, 723 (1949).Google Scholar
  941. Rossi, F., G. Pescetto u. E. Reale: Alk. fosfatasi, sviluppo prenatale dell’uomo. Z. Anat. 115, 500 (1951).Google Scholar
  942. Rothlin, E.: Beiträge zum Eisenstoffwechsel. Verh. schweiz. naturforsch. Ges. 123, 155 (1943).Google Scholar
  943. Rothmann, S. C.: Constructive Uses of atomic Energy. New York: Harper Brothers, Publ. 1949.Google Scholar
  944. Roulet, F.: Methoden der pathologischen Histologie. Wien: Springer 1948.Google Scholar
  945. Rugh, R.: The mouse thyroid and radioactive iodine (J131). 2. The excertion rate of radioactive iodine following its injection into the adult nursing and non-nursing mouse, and its rate of absorption by the suckling young. Manuskr. Technical Inform. Oak Ridge 1951.Google Scholar
  946. Ruhenstroth-Bauer, G., u. G. Hermann: Nuklein-und Lipoidphosphorgehalt an Erythrocyten und Reticulocyten. Naturforschung 1950,. 416.Google Scholar
  947. Sacktor, B.: Investigations on the mitochondria of the house fly, Musca domestica L. J. Gen. Physiol. 36, 371 (1953), 37, 343 (1954).Google Scholar
  948. Salvidio, E.: Ricerche di enzimologia microquantitativa sul midollo osseo umano normale. 3. Fosfatasi alcalina nei granuloblasti e negli eritroblasti ottenuti dopo separazione frazionata del tessuto emopoietico. Progr. med. (Torino) 9, 139 (1953).Google Scholar
  949. Sacktor, B.: Determinazione quantitative dell’attività della fosfatasi alcalina nei granuloblasti e negli eritroblasti del midollo osseo del ratto albino. Haematologica (Pavia) 37, 1–12 (1953).Google Scholar
  950. Sand, H. F.: Source of the bicarbonate of saliva. J. Appl. Physiol. 4, 66 (1951).PubMedGoogle Scholar
  951. Sanders, F. K.: Spezial Methods. Bourne’s Cytology. 1951.Google Scholar
  952. Saunders, J. B. DE C. M., J. Nuckolls and H. E. Frisbie: Amelogenesis, a histologic study of the development, formation and calcification of the enamel in the molar tooth of the rat. J. Amer. Coll. Dentists 9, 1 (1942).Google Scholar
  953. Sohachner, H., B. A. Fries and J. L. Chaikoff: The effect of hexoses and pentoses on the formation in vitro of phosphorlipid by brain tissue as measured with radioactive phosphorus. J. of Biol. Chem. 146, 95 (1942).Google Scholar
  954. Schade, A. L., and L. Caroline:Science (Lancaster, Pa.) 104, 340 (1946).Google Scholar
  955. Schettler, G.: Cholesterin und Phosphatide bei hungernden Mäusen. Pflügers Arch. 251, 398 (1949).Google Scholar
  956. Schleicher, E. M.: The value of the sternal portion of the bone marrow in diagnosis. Minnesota Med. 28, 669 (1945).Google Scholar
  957. Sacktor, B.: Miliary tuberculosis of the bone marrow. Amer. Rev. Tbc. 53, 115 (1946).Google Scholar
  958. Sacktor, B.: Isolation of particles from aspirated sternal marrow for biopsy. Amer. J. Clin. Path. 17, 909 (1947).Google Scholar
  959. Sacktor, B.: Reticulo-epitheloid cell granulomas in bone marrow in herpes zoster. Amer. J. Clin. Path. 19, 981 (1949).Google Scholar
  960. Schlieper, C.: Osmotik des Tierkörpers. Jena. Z. Naturwiss. 75, 223 (1942).Google Scholar
  961. Sacktor, B.: Stoffwechsel. Fortschr. Zool. 9, 442 (1952).Google Scholar
  962. Schmeiser, K.: Autoradiographie. In H. SCHWIEGK u. Mitarb., S. 76–102. 1953.Google Scholar
  963. Schmidt, C. L. A., and D. M. Greenberg: Occurence, transport and regulation of calcium, magnesium and phosphorus in the animal organism. Physiologic. Rev. 15, 297 (1935).Google Scholar
  964. Schmidt, G., and S. J. Thannhauser: Intestinal phosphatase. J. of Biol. Chem. 149, 369 (1943).Google Scholar
  965. Sacktor, B.: A method for the determination of desoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissues. J. of Biol. Chem. 161, 83 (1945).Google Scholar
  966. Schmidt, M. B. Eisenstoffwechsel. In BETHE- PERGMANN-EMBDEN-ELLINGERS Handbuch der normalen und pathologischen Physiologie. Berlin: Springer 1931.Google Scholar
  967. Schmitt, F. O.: Some commentaires on electron microscopy as applied in biology. Federat. Proc. 8, 530 (1949).Google Scholar
  968. Schneider, H., and H. Steenbock: A low phosphorus diet and the response of rats to vitamin D2. J. of Biol. Chem. 128, 159 (1939).Google Scholar
  969. Schneider, W. C.: Phosphorus compounds in animal tissues. Extraction and estimation of desoxypentose nucleic acid and of pentose nucleic acid. J. of Biol. Chem. 161, 293 (1945).Google Scholar
  970. Sacktor, B.: Phosphorus compounds in animal tissues. 2. The nucleic acid content of homologous normal and cancer tissues. Cancer Res. 5, 717 (1945).Google Scholar
  971. Sacktor, B.: Phosphorus compounds in animal. tissues. J. of Biol. Chem. 164, 774 (1946); 165, 585 (1946).Google Scholar
  972. Schnitzer, K. L.: Ein Kalkdepot. Pflügers Arch. 225, 705 (1930).Google Scholar
  973. Schoenheimer, R: The dynamic state of body constituents. Harvard Univ. Monogr. in Med. 3. Aufl., Cambridge, Mass. 1949.Google Scholar
  974. Schour, J.: Calcium metabolism and teeth. J. Amer. Med. Assoc. 110, 870 (1938).Google Scholar
  975. Schour, J., S. B. Chandler and W. R. Tweedy: Changes in the teeth following parathyreoidectomy. Amer. J. Path. 13, 945, 970 (1937).Google Scholar
  976. Schubert, J.: Estimating radioelements. Nucleonics 1951.Google Scholar
  977. Sacktor, B.: Sodium citrate metabolism, plutonium and radio-yttrium. J. Labor. a. Clin. Med. 34, 313 (1949).Google Scholar
  978. SCHUbERT, J., and M. Finkel: Plutonium, yttrium, blood, liver, skeleton. J. of Biol. Chem. 182, 635 (1950).Google Scholar
  979. Schubert, J., and H. Wallace • Zirkonium, sodium gitrate, distribution, excretion, J. of Biol. Chem. 183, 157 (1950).Google Scholar
  980. Schubert, J., and M. Withe: Beryllium. J. Labor. a. clin. Med. 35, 854 (1950).Google Scholar
  981. Sacktor, B.: Zirconium, excretion, distribution, plutonium, yttrium. J. of Biol. Chem. 184, 191 (1950).Google Scholar
  982. Schujenioff, S.: Calcium-Nachweis. Z. Heilk. 18, 79 (1897).Google Scholar
  983. Schultz, A.: Eisen. Arch. Gynäk. 155, 479 (1933).Google Scholar
  984. Schultz-Brauns, O.: Schnittveraschung fixierter tierischer Gewebe. Z. wiss. Mikrosk. 48, 161 (1931).Google Scholar
  985. Sacktor, B.: Verh. path. Ges. 26, 153 (1931).Google Scholar
  986. Schultze, M. D., and C. A. Elvehjem: Relation of iron and copper to reticulocyte response in anemic rats. J. of Biol. Chem. 102, 357 (1933).Google Scholar
  987. Schultze, M. O.: Metallic elements. Physiologic. Rev. 20, 37 (1940).Google Scholar
  988. Schwiegk, H., u. K. Lang: Radioaktive Isotope in der Endokrinologic. In H. SCHWIEGK, Radioaktive Isotope. Heidelberg: Springer 1953.Google Scholar
  989. Schwiegk, H. u. Mitarb.: Künstliche Radioaktive Isotope in Physiologie, Diagnostik und Therapie. Heidelberg: Springer 1953.Google Scholar
  990. Scott, G. H.: Sur la localisation des constituants minéraux dans les noyaux cellulaires des acini et des conduits excréteurs des glandes salivaires. C. r. Acad. Sci. Paris 190, 1073 (1930).Google Scholar
  991. Sacktor, B.: Sur la disposition des constituants minéraux du noyau pendant la mitose. C. r. Acad. Sci. Paris 190, 1323 (1930). The disposition of the fixed mineral salts during mitosis. Bull. Histol. appl. 7, 251 (1930).Google Scholar
  992. Sacktor, B.: Microincineration. Amer. J. Anat. 55, 243 (1933).Google Scholar
  993. Sacktor, B.: Microincineration. Proc. Soc. Exper. Biol. a. Med. 44, 397 (1940).Google Scholar
  994. Sacktor, B.: Mineral distribution in the cytoplasm. Biol. Symposia (Lancaster, Pa.) 10, 233 (1943).Google Scholar
  995. Scott, G. H., and B. L. Canaga jr.: Cesium in the mammalian retina. Proc. Soc. Exper. Biol. a. Med. 40, 275 (1939).Google Scholar
  996. Scott, G. H., and D. M. Packer: Incineration. Science (Lancaster, Pa.) 89, 227.Google Scholar
  997. Sacktor, B.: Anat. Rec. 74, 31 (1939).Google Scholar
  998. Scott, G. H., and A. Whliams• Anat. Rec. 64, 107 (1935).Google Scholar
  999. Scott, K. G., D. J. Axelrod, H. Fisher, J. F. Crow-Ley and J. G. Hamilton: The metabolism of plutonium in rats following intramuscular injection. J. of Biol. Chem. 176, 283 (1948).Google Scholar
  1000. Scow, K. G., D. J. Axelrod, J. Crowley and J. G. Hamilton • Deposition and fate of plutonium, uranium and their fission products inhaled as aerosols by rats and man Arch. of Path. 48, 31 (1949).Google Scholar
  1001. Scorr, K. G., D. J. Axelrod and J. G. Hamilton: The metabolism of curium in the rat. J. of Biol. D. 177, 325 (1949).Google Scholar
  1002. Scorr, K. G., D. H. Copp, D. J. Axelrod and J. G. Hamilton • The metabolism of americium in the rat. J. of Biot. Chem. 175, 691 (1948).Google Scholar
  1003. Scott, K. G., and J. H. Lawrence: Effect of radiophosphorus on blood of monkeys. Proc. Soc. Exper. Biol. a. Med. 48, 155 (1941).Google Scholar
  1004. Sebruyns, M.: De histotopochemie van het glycogen en de alcalische phosphatase in het embryonnaire en jonge kraakbeen. Natuurw. Tijdschr. 32, 110 (1950).Google Scholar
  1005. Sacktor, B.: De histochemische localisatie der alkalische phosphatase in verschillende weefsels. Belg. Tijdschr. v. Milit. Geneesk. 104 (1951).Google Scholar
  1006. Seligman, A. M., and L. H. Mannheimer• Acid phosphatase. J. Nat. Canc. Inst. 9, 427 (1949).Google Scholar
  1007. Selye, H.: Textbook of Endocrinology, 2. Aufl. Montreal: Acta Endocrinologia Inc. 1950.Google Scholar
  1008. Sendroy jr., J.: Photoelectric determination of oxalic acid and calcium and its application to micro-and ultramicroanalysis of serum. J. of Biol. Chem. 144, 243 (1942).Google Scholar
  1009. Sacktor, B.: Determination of serum calcium by precipitation with oxalate. J. of Biol. Chem. 152, 539 (1944).Google Scholar
  1010. Sacktor, B.: Mineral metabolism. Annual Rev. Biochem. 14, 407 (1945).Google Scholar
  1011. Sendroy jr., J., and A. S. Alving: Photoelectric microdetermination. J. of Biol. Chem. 142, 159 (1942).Google Scholar
  1012. Serra, J. A., e A. Queiroz Lopes: Une méthode pour la démonstration histochimique du phosphore des acides nucléiques. Portugal. A.ta Biol. Ser. A 1, 111 (1945).Google Scholar
  1013. Sharp, L. W.: Fundamentels of Cytology. New York 1943.Google Scholar
  1014. Sheppard, C. W., E. B. Wells, P. F. Hahn and J. P. B. Goodell: Studies of the distribution of intravenously administered colloidal sols of manganese dioxide and gold in human beings and dogs using radioactive isotopes. J. Labor. a. Clin. Med. 32, 274 (1947).Google Scholar
  1015. Sherlock, S., and V. Walshe: Phosphatase studies on liver tissue of normal subjects and in liver and bone disease. J. of Path. 59, 615 (1948).Google Scholar
  1016. Sherman, H. C.: Chemistry of Food and Nutrition, 7. Aufl. New York: Macmillan & Co. 1943.Google Scholar
  1017. Sacktor, B.: The Science of Nutrition. New York: Columbia University Press 1943.Google Scholar
  1018. Sacktor, B.: Foods: their values and management. New York: Columbia University Press 1946.Google Scholar
  1019. Sacktor, B.: Calcium and Phosphorus in Foods and Nutrition, 2. Aufl. New York: Columbia University Press 1948.Google Scholar
  1020. Sherman, H. C., C. A. Elvehjem and E. B. Hart: Utilization of the iron and copper of egg yolk for hemoglobin formation. J. of Biol. Chem. 107, 289 (1934).Google Scholar
  1021. Sherman, H. C., and C. S. Lanford: Essentials of Nutrition. 2. Aufl. New York: Macmillan & Co. 1943.Google Scholar
  1022. Sherman, H. C., and E. J. Quinn: Phosphorus content of the body in relation to age, growth and food. J. of Biol. Chem. 67, 667 (1926). SHIMIZU, N. Histochemical phosphatase in the nervous system. J. Comp. Neur. 93, 201 (1950).Google Scholar
  1023. Siiohl, B. M.: Mineral Metabolism. London: Chapman-Hall; New York: Reinhold 1940.Google Scholar
  1024. Shulman, O.: Introduction to Biophysics. New York: Wiley & Sons 1943.Google Scholar
  1025. Silberberg, M., and R. Silberberg: Effects of endocrines on age changes in the epiphyseal and articular cartilages. Endocrinology 31, 410 (1942).Google Scholar
  1026. Sacktor, B.: Influence of the endocrine glands on growth and aging of the skeleton. Arch. of Path. 36, 512 (1943).Google Scholar
  1027. Sacktor, B.: The effects of parathyroid hormone and calcium gluconate on the skeletal tissues of mice. Amer. J. Path. 19, 839 (1943).Google Scholar
  1028. Sacktor, B.: Some aspects of the role of hormonal and nutritional factors in skeletal growth and development. Growth 13, 359 (1949).Google Scholar
  1029. Sacktor, B.: Effects of a high fat diet on the joints of aging mice. Arch. of Path. 50, 828 (1950).Google Scholar
  1030. Silberberg, R., M. Silberberg and F. J. Dixox: Obliterating tracheitis, a complication following administration of radioactive iodine. J. Labor. a. Clin. Med. 39, 256 (1952).Google Scholar
  1031. Silberberg, R., M. Opdyke and M. Silberberg: Significance of calorie intake and specific effects of high-fat diets on skeletal growth and development of mice. Growth 16, 127 (1952).PubMedGoogle Scholar
  1032. Simpson, W. L.: Radioactives isotopes, Cowdry’s Microscopic technique in Biology and Medicine. Baltimore: Williams & Wilkins Company 1943.Google Scholar
  1033. Sinclair, R. G., and C. Smith: The turnover of phospholipids in the intestinal mucosa. J. of Biol. Chem. 121, 361 (1937).Google Scholar
  1034. Siri, W. E.: Isotopic Tracers and nuclear Radiations with Application to Biology and Medicine. New York: McGraw-Hill 1949.Google Scholar
  1035. Siwe, S. A.: Stufenphotometrische Bestimmung von Phosphor in kleinen Blutmengen. Biochem. Z. 278, 437 (1935).Google Scholar
  1036. Sjögren, B., T. Nordenskjöld, H. Holmgren u. JMllerstrm: Beitrag zur Kenntnis der Leberrhythmik (Glykogen, Phosphor und Calcium in der Kaninchenleber). Skand. Arch. Physiol. (Berl. u. Lpz.) 65, 9 (1938).Google Scholar
  1037. Smith, E. E., and P. Gray: The distribution of copper64 in early embryo chicks. J. of Ex-per. Zool. 107, 183 (1948).Google Scholar
  1038. Smith, E. E., and F. C. Mcclean’ Effect of hyperthyroidism upon growth and chemical composition of bone. Endocrinology 23, 546 (1938).Google Scholar
  1039. Smith, H. C., and L. Otis: Hemoglobin regeneration in relation to iron intake. J. Nutrit. 13, 573 (1937).Google Scholar
  1040. Smythe, C. V., and R. C. Miller: The iron content of the albino rat at different stages of the life cycle. J. Nutrit. 1, 209 (1929).Google Scholar
  1041. Sobel, A. E., A Hanok and A. Wolffe: Studies of cellular calcifying mechanism. Federat. Proc. 9, 231 (1950).Google Scholar
  1042. Sobel, A. E., M. Rockenmacher and B. Kramer• J of Biol. Chem. 158, 475 (1945); 159, 159 (1945).Google Scholar
  1043. Sognaes, R. F., J. H. Shaw, A. K. Salomon and E. Harvold: Method for radioautography of specimens composed of both hard and soft structures. Anat. Rec. 104, 319 (1949).Google Scholar
  1044. Sorensen, B. N., B. M. Dale and J. D. Kurbatov: Disintegration scheme of scandium. Physic. Rev. 79, 1007 (1950).Google Scholar
  1045. Soulairac, A.: Action du diabète alloxanique sur la phosphatase alcaline intestinale et rénale du rat. Effet de l’insuline C. r. Soc. Biol. Paris 142, 643 (1948).Google Scholar
  1046. Sacktor, B.: Lactivité phosphatasique alcaline du rein. Son rôle dans la réabsorption tubulaire du glucose. J. de Physiol. 41, 272 (1949).Google Scholar
  1047. Soulairac, A., et P. Desclaux: Tractus génital. C. r. Assoc. Anat. Paris 1948.Google Scholar
  1048. Sacktor, B.: Activité phosphatasique des ilots de Langerhans. Ann. d’Endocrin. 12, 228 (1951).Google Scholar
  1049. Soulairac, A., P. Desclaux et J. Teysseyre: Phosphatase alcaline rénale. Ann d’Endocrin. 10, 535 (1949).Google Scholar
  1050. Sowden, J. C., and H. O. L. Fisher: The chemistry and metabolism of the compounds of phosphorus. Annual Rev. Biochem. 11, 203 (1942).Google Scholar
  1051. Spear, F. G.: Radiations and living Cells. New York: Wiley a. Sons 1954.Google Scholar
  1052. Spray, C. M., and E. M. Widdowson: Brit. J. Nutrit. 4, 332 (1950).PubMedGoogle Scholar
  1053. Stafford, R. O., W. H. Mcshan and R. K. Meyer: Acid and alkaline phosphatases during pregnancy and lactation. Endocrinology 41, 45 (1947).PubMedGoogle Scholar
  1054. Stahl, S. S., J. P. Weinmann, J. Schour and A. M. Bunt: The effect of estrogen on the alveolar bone and teeth of mice and rats. Anat. Rec. 107, 21 (1950).PubMedGoogle Scholar
  1055. Stanley, M. M., and S. J. Thanuhauser: Abs. a. dispos. of orally adminstered J131 labelled neutral fat in man. J. Labor. a. Clin. Med. 34, 1634 (1949).Google Scholar
  1056. Stearns, G.: The mineral metabolism of normal infants. Physiologic. Rev. 19, 415 (1939).Google Scholar
  1057. Steggerda, F. R.: Variability in the calcium metabolism and calcium requirements of adult human subjects. J. Nutrit. 31, 407 (1946).PubMedGoogle Scholar
  1058. Stern, K. G.: Studies on macromolecular particles endowed with specific biological activity. Biol. Symposia (Lancaster, Pa.) 10, 291 (1943).Google Scholar
  1059. Stewart, R. T., R. T. Snowman, C. L. Yuile and G. H. Whipple: Radioiron excretion by the skin and kidney of dogs. Proc. Soc. Exper. Biol. a. Med. 73, 473 (1950).Google Scholar
  1060. Stone, W. E.: Acid-soluble phosphorus compounds of cerebral tissue. J. of Biol. Chem. 149, 29 (1943).Google Scholar
  1061. Stowell, R. E.: A modified freezing-drying apparatus for tissues. Stain Technol. 26, 105 (1951).PubMedGoogle Scholar
  1062. Strajman, E., and N. Pace: In vivo studies with radioisotopes. Adv. Biol. a. Med. Physics 2 (1951).Google Scholar
  1063. Stumpf, P. K.: Phospherylated carbohydrate compounds in developing chick embryos. Federat. Proc. 6, 296 (1947).Google Scholar
  1064. Sulkin, N. M., and J. H. Gardner: The acid and alkaline phosphatase activity in the normal and recovering liver of the rat. Anat. Rec. 100, 143 (1948).PubMedGoogle Scholar
  1065. Sulkin, N. M., and A. Kuntz: A histochemical study of the autonomic ganglia of the cat, following prolonged preganglionic stimulation. Anat. Rec. 108, 255 (1950).PubMedGoogle Scholar
  1066. Sullivan, W. D.: Distribution of alkaline phosphatase in Colpidium campylum. Trans. Amer. Microsc. Soc. 69, 267 (1950).Google Scholar
  1067. Suntzeff, V., and C. Carruthers: The mineral composition of human epidermis. J. of Biol. Chem. 160, 567 (1945).Google Scholar
  1068. SylvÉn, B., S. Paul-Son, C. Hirsch and O. S.Ellman • Biophysical observations and physiological investigations on cartilage and other mesenchymal tissues. 2. The ultrastructure of bovine and human nuclei pulposi. J. Bone Surg. A 33, 333 (1951).Google Scholar
  1069. szentgyörgyi, A. v.: Studies on muscle. Acta physiol. scand. (Stockh.) 9, Suppl. 25 (1945).Google Scholar
  1070. Sacktor, B.: Contraction and the chemical structure of the muscle fibril. J. Colloid Sci. 1, 1 (1946).Google Scholar
  1071. Szepsenwol, J., and M. H. Partridge: Phosphorus content of various tissues of chick embryo. Amer. J. Physiol. 171, 257 (1952).PubMedGoogle Scholar
  1072. Takamatsu, H.: Histologische und biochemische Studien über die Phosphatase. I. Mitt. Histochemische Untersuchungsmethodik der Phosphatase und deren Verteilung in verschiedenen Organen und Geweben. Trans. Soc. Path. Jap. 29, 492 (1939).Google Scholar
  1073. Taurog, A., F. N. Briggs and J. L. Chaikoff: Jn31-labelled 1-thyroxine, an unidentified excretion product in bile. J. of Biol. Chem. 191, 29 (1951).Google Scholar
  1074. Teorell, T.: Spektrophometrische Mikrobestimmung des Phosphors.- Biochem. Z. 230, 1, 232 (1931).Google Scholar
  1075. Teorell, T., u. B. Norberg: Über das Verhalten der Phosphorfraktionen bei Autolyse von Organen. Biochem. Z. 249, 53 (1932).Google Scholar
  1076. Thewlis, J.: Structure of teeth as shown by X-ray examination. Gr. Br. Privy Counc. Med. Res. Counc. Spec. Rept. Ser. 238, 1 (1940).Google Scholar
  1077. Thomas, D. G., and J. D. Kurbatov: Search for photons emitted by long-life species of nickel. Physic. Rev. 77, 151 (1950).Google Scholar
  1078. Thorell, B., and A. Wilton: The nucleotide metabolism of the dentine cells under normal conditions and in avitaminosis C. Acta path. stand. (Kobenh.) 22, 593 (1945).Google Scholar
  1079. Tiel, N. VAN: Adsorption von Metallen und Vitamin C an GoLGI-Körpern. Arch. néerl. Zool. 4, 359 (1939).Google Scholar
  1080. Takamatsu, H.: Protoplasma (Berl.) 35, 289 (1940).Google Scholar
  1081. Timiras, P. S., and M. Herlant: Distribution of alkaline and acid phosphatases and of ribonucleins in the kidney. Rev. canad. de Biol. 10. 90 (1951).Google Scholar
  1082. Tonutti, E.: Histophysiologie der LEvDIGschen Zwischenzellen des Rattenhodens. Z. Zellforsch. 32, 495 (1943).Google Scholar
  1083. Trachler, W.: Spektrographie am menschlichen Auge. Diss. Basel 1934.Google Scholar
  1084. Treadwell, A., B. V. A. Low-Beer, J. L. Friedell and J. H. Lawrence: Metabolic studies on neoplasm of bone with the aid of radioactive strontium. Amer. J. Med. Sci. 204, 521 (1942).Google Scholar
  1085. Tropp, C., O. Seuberling u. B. Eckhardt: Mikrophosphorbestimmung im Liquor. Biochem. Z. 290, 320 (1929).Google Scholar
  1086. Tschopr, E.: Spodogramm. In MÖLLENDORFFS Handbuch der mikroskopischen Anatomie, Bd. 1. Berlin 1929.Google Scholar
  1087. Tso Kan Chang: Calcification in the fetuses of normal and anion sheep. Anat. Rec. 105, 723 (1949).Google Scholar
  1088. Tsuboi, K. K.: Phosphomonoesterase activity in hepatic tissues of the mouse. Biochem. et Biophysica Acta 8, 173 (1952).Google Scholar
  1089. Tubiana, M.: Les Isotopes radioactifs en Médicine et en Biologie. Paris 1950.Google Scholar
  1090. Tupikowa, N., and R. W. Gerard: Amer. J. Physiol. 119, 414 (1937).Google Scholar
  1091. Turco, G. L.: Analisi quantitativa dell’accrescimento del fegato della pecora nel periodo prenatale. Arch. ital. Anat. e Embriol. 58, 59 (1953).Google Scholar
  1092. Turpeinen, O.: Studies on sodium defiency. The effects of sodium deprivation on young puppies. Amer. J. Hyg. 28, 104 (1938).Google Scholar
  1093. Tuttle, L. W., L. A. Erf and J. H. Lawrence: J. Clin. Invest. 20, 577 (1941).PubMedGoogle Scholar
  1094. Tweedy, W. R., M. E. Chilcote and M. C. Patras: Ca, P, parathyroidea. J. of Biol. Chem. 168, 597 (1947).Google Scholar
  1095. Tweedy, W. R., M. V. Lheureux and E. M. Zorn: Ca, P, parathyreoidea. Endocrinology 47, 219 (1950).Google Scholar
  1096. Tyler, C.: Studies of calcium and phosphorus metabolism in relation to the chemical structure of bone. 1. Experiments with laying birds. Biochemie. J. 34, 202 (1940).Google Scholar
  1097. Uber, F. M.: Microincineration and ash analysis. Bot. Review 6, 204 (1940).Google Scholar
  1098. and T. Goodspeed: Microincineration studies. Proc. Nat. Acad. Sci. USA. 21, 428 (1935); 22, 463 (1936).Google Scholar
  1099. Uber, F. M.: Bot. Gaz. 97, 416 (1935). Univ. California Publ. Bot. 18, 33 (1935).Google Scholar
  1100. Ulrich, F., W. O. Reinhardt and C. H. LI: C45, hypophysis. Endocrinology 48, 245; 49, 213 (1951).Google Scholar
  1101. Urbach, C.: Notiz zur quantitativen Bestimmung des Gesamtphosphors sowie des organischen und anorganischen Phosphors mittels des PHLFRICxschen Stufenphotometers. Biochem. Z. 268, 457 (1934).Google Scholar
  1102. Ussing, H. H.: Interpretation of the exchange of radio-sodium in isolated muscle. Nature (Lond.) 160, 262 (1947).Google Scholar
  1103. Uber, F. M.: The transfer of inorganic ions across living membranes in the light of tracer studies. Proc. Internat. Congr. Exper. Cytology 6, 318 (1950).Google Scholar
  1104. Vannotti, A.: Eisenstoffwechsel. In SCHWIEGK u. Mitarb., S. 465–478. 1953.Google Scholar
  1105. M. Closuit et A. Jaccottet: Fer. Bull. Acad. Suisse Sci. méd. 5, 427 (1949).Google Scholar
  1106. et A. Delachaux: Der Eisenstoffwechsel und seine klinische Bedeutung. Basel: Benno Schwabe & Co. 1942.Google Scholar
  1107. Vernadsky, W. J.: La Géochemie. Paris 1929. Geochemie, 2. Aufl. Moskau 1934.Google Scholar
  1108. Verzar and Macdougal: Absorption from the intestine. London 1936.Google Scholar
  1109. Villee, C. A., M. Lowens, M. Gordon, E. Leonard and A. Rich: The incorporation of P32 into the nucleoproteins and phosphoproteins of the developing sea urchin embryo. J. Cellul. a. Comp. Physiol. 33, 93 (1949).Google Scholar
  1110. Visscher, M. B., R. R. Roepke and N. Lifson: Amer. J. Physiol. 144, 457 (1945).Google Scholar
  1111. Vitagliano, G., and M. DE Nicola: RNS, phosphatase, Asellus. Nature (Lond.) 162, 965 (1948).Google Scholar
  1112. VANNOTTI, A.: Ric. Scient. 16, 840 (1948).Google Scholar
  1113. Vosburgh, J. Gilbert and L. B. Flexner: Maternal plasma as a source of iron for the fetal guinea pig. Amer. J. Physiol. 161, 202 (1950).Google Scholar
  1114. Wachstein, M.: Influence of dietary deficiencies and various poisons on the histochemical distribution of phosphatase in the liver And kidney. Arch. of Path. 38, 297 (1944); 40, 57 (1945); 42, 501 (1946).Google Scholar
  1115. Wachstein, M.: Alkaline phosphatase activity in normal and abnormal human blood and bone marrow cells. J. Labor. a. Clin. Med. 31, 1–17 (1946).Google Scholar
  1116. Wachstein, M., and F. G. Zak: Intracellular bile canaliculi in the rabbits liver. Proc. Soc. Exper. Biol. a. Med. 72, 234 (1949).Google Scholar
  1117. Wachstein, M.: Alkaline phosphatase in experimental biliary cirrhosis. Amer. J. Clin. Path. 20, 99 (1950).Google Scholar
  1118. Wagner, R.: Enzyme studies on white blood cells. Phosphorylating glycogenolysis. Accumulation of an intermediary reducing substance and formation of lactic acid. Arch. of Biochem. 26, 123 (1950); 29, 260 (1950).Google Scholar
  1119. Warweg, E., and G. Stearns: Studies of phosphorus of blood. J. of Biol. Chem. 115, 567 (1936).Google Scholar
  1120. Wassermann, F.: Enamel formation under normal and experimental conditions. J. Dent. Res. 20, 254 (1941).Google Scholar
  1121. Wachstein, M.: Analysis of the enamel formation in the continuously growing teeth of normal and vitamin C deficient guinea pigs. J. Dent. Res. 23, 463 (1944).Google Scholar
  1122. Wachstein, M.: Electron microscopic study of the submicroscopic network of fibrils as a component of connective tissue. Anat. Rec. 111, 145 (1951).Google Scholar
  1123. Wassermann, F., J. R. Blayney, G. Gsötzinger and J. G. DE WITT: J. Dent. Res. 20, 389 (1941).Google Scholar
  1124. Waterhouse, D. F.: Council S. J. Res. Australia Bull. 191, 7, 21 (1945).Google Scholar
  1125. Weidenreich, F.: Knochengewebe. In Handbuch der mikroskopischen Anatomie des Menschen, Bd. 2/2. Berlin: Springer 1930.Google Scholar
  1126. Weinmann, E. O. J. L. Chaikoff, W. G. Dauber, M. Gee and C. Entenman: J. of Biol. Chem. 184, 735 (1950).Google Scholar
  1127. Weinmann, J. P., and J. Schour: Experimental studies in calcification. The effect of irradiated ergosterol and of starvation on the dentin of the rachitic rat. Amer. J. Path. 21, 1047, 1057 (1945).PubMedGoogle Scholar
  1128. Weinmann, J. P., G. D. Wessinger and G. Reed: Correlation of chemical and histological investigations on the developing enamel. J. Dent. Res. 21, 171 (1942).Google Scholar
  1129. Weissenberger, L. H., and P. L. Harris: J. of Biol. Chem. 157, 543 (1943).Google Scholar
  1130. Weisz, P. B.: Phosphatases in normal reorganizing. Biol. Bull. 97, 108 (1949).PubMedGoogle Scholar
  1131. Werner, S. C., E. H. Quimby and C. Schmidt: Jiu-study of normal thyroid and disordered thyroid function in man. J. Clin. Endocrin. 9, 342 (1949).Google Scholar
  1132. Wessinger, G. D., and J. P. Weinmann: The effect of manganese and boron compounds on the rat incisor. Amer. J. Physiol. 139, 233 (1943).Google Scholar
  1133. Wesson jr., L. G., W. E. Cohn and A. M. Beues: The effect of temperature on potassium equilibria in chick embryo muscle. J. Gen. Physiol. 32, 511 (1949).PubMedGoogle Scholar
  1134. Wheeler, B. M.: Jodine metabolism of Drosophila. Proc. Nat. Acad. Sci. U.S.A. 33, 298 (1947).Google Scholar
  1135. Wachstein, M.: Jodine metabolism studies by means of Jiai. J. of Exper. Zool. 115, 83 (1950).Google Scholar
  1136. Whipple, G. H. u. Mitarb.: J. of Exper. Med. 70, 443 (1939). 76, 15 (1942).Google Scholar
  1137. Wwston, C.: A histological study of the growing avian femur (Gallus domesticus) following experimental dislocation of the hip. Anat. Rec. 76, 499 (1940).Google Scholar
  1138. Wiener, A.: Eisen in Geweben. Biochem. Z. 77, 27 (1916).Google Scholar
  1139. Wilbrandt, W.: Ca-und Na-Antagonismus. Verh. Schweizer Physiologen 1939.Google Scholar
  1140. Wachstein, M.: Permeability. Annual Rev. Physiol. 9, 581 (1947).Google Scholar
  1141. Wilburg, J.: Mineral structure of incinerated kidneys. Bull. Acad. Pol. Sci., Cl. Nat., Ser. B 1946, 121.Google Scholar
  1142. Williams, P. S., and G. H. SCOTT: An electrode arrangement for spark spectography. Rev. Sci. Instrum. 6, 277, 361 (1935).Google Scholar
  1143. Wilmer, H. A.: The disappearence of phosphatase from the hydronephrotic kidney. J. of Exper. Med. 78, 225 (1943).Google Scholar
  1144. Wachstein, M.: Renal phosphatase; a correlation between functional activity of the renal tubule and its alkaline phosphatase content. Arch. of Path. 37, 227 (1944).Google Scholar
  1145. Wachstein, M.: Failure to demonstrate alkaline phosphatase activity in inclusion bodies by the histochemical technic. Proc. Soc. Exper. Biol. a. Med. 55, 206 (1944).Google Scholar
  1146. Windl, W. F.: The Physiology of the Fetus. Philadelphia 1940.Google Scholar
  1147. Winogradoff, A. P.: Geochemie, Biochemie. Moskau: Akad. Wiss. 1938.Google Scholar
  1148. Winter and Smith: Phosphorus J. of Physiol. 56, 227 (1922).Google Scholar
  1149. Wirtschafter, Z. T.: Minerals in Nutrition. New York: Reinhold 1942.Google Scholar
  1150. Wislocki, G. B.: Studies on the growth of deer antlers. 1. On the structure and histogenesis of the antlers of the Virginia deer (Odocoileus virginianus borealis). Amer. J. Anat. 71, 371 (1942).Google Scholar
  1151. Wislocki, G. B., and E. W. DEMPSEY: Observations on the chemical cytology of normal blood and hematopoietic tissues. Anat. Rec. 96, 249 (1946).Google Scholar
  1152. Wachstein, M.: Histochemical changes in normal and pathological placental villi (hydatidiform mole, eclampsia). Endocrinology 38, 90 (1946).Google Scholar
  1153. Wachstein, M.: The chemical histology of the human placenta and decidua with reference to mucopolysaccharides, glycogen, lipids and acid phosphatase. Amer. J. Anat. 83, 1 (1948).Google Scholar
  1154. Wislocki, G. B., H. L. WEATHERFORD and M. SINGER: Osteogenesis of antlers investigated by histological and histochemical methods. Anat. Rec. 99, 365 (1947).Google Scholar
  1155. Woerner, CH. A.: Effect of Au198 and P32 on the liver and on the deposition of lipids in the arteries of experimental animals. Anat. Rec. 112, 167 (1952).Google Scholar
  1156. Woodruf, N. H., and E. E. FOWLER: Biological syntheses of radioisotopes labeled compounds. J. Tennesse Acad. Sci. 24, 229 (1949).Google Scholar
  1157. Wyckoff, Ralph W. G.: Electron Microscopy. New York: Interscience 1949.Google Scholar
  1158. Yagoda, H.: Spectrographic Analysis. Industr. a. Engin. Chem. 1940, 698.Google Scholar
  1159. Yagoda, H.: Radioactive Measurements. New York: Wiley & Sons 1949.Google Scholar
  1160. Yamamoto, T.: Physiological studies on fertilization and activation of fish egs. V. The role of calcium ions in activitation of Oryzias eggs. Exper. Cell. Res. 6, 56 (1954).Google Scholar
  1161. Yokoyama, H. O., R. E. Stowell and R. M. Mathews: Evaluation of histochemical alkaline phosphatase technics. Anat. Rec. 109, 139 (1951).Google Scholar
  1162. Yokoyama, H. O., K. K. TSUBOI and M. E. WILSON: Regenerating mouse liver. Labor. Invest. 2, 91 (1953).Google Scholar
  1163. Zander, H. A.: The distribution of phosphatase in gingival tissue. J. Dent. Res. 20, 347 (1941).Google Scholar
  1164. Zander, H. A., and H. W. Smith: Penetration of silver nitrate into dentin. J. Dent. Res. 24, 121 (1945).Google Scholar
  1165. Zeiger, K.: Physikochemische Grundlagen der histologischen Methodik. Leipzig 1938.Google Scholar
  1166. Zander, H. A.: Autonomie und physikalisch-chemische Zytologie. Mikroskopie (Wien) 5, 205 (1950).Google Scholar
  1167. Zielinsky, M. A.: Phosphorus in the early development of the frog. Bull. Acad. Pol. Sci. B (2), 294 (1935).Google Scholar
  1168. Zilversmit, D. B.: Phospholipid metabolism. Adv. Biol. a. Med. Physics 1, 123 (1948).Google Scholar
  1169. Zimen, K. E.: Angewandte Radioaktivität. Berlin-Göttingen-Heidelberg: Springer 1952.Google Scholar
  1170. Zittle, CH. A., and E S Dellamonica: Effects of borate and other ions on the alkaline phosphatase of bovine milk and intestinal mucosa. Arch. of Biochem. 26, 112 (1950).Google Scholar
  1171. Zander, H. A.: Adsorption of bovine alkaline phosphatase and diatomaceous silica. Proc. Soc. Exper. Biol. a. Med. 76, 193 (1951).Google Scholar
  1172. Zander, H. A.: Use of butanol in the purification of the alkaline phosphatase of bovine milk. Arch. of Biochem. a. Biophysics 35, 321 (1952).Google Scholar
  1173. Zander, H. A.: Effect of aliphatic alcohols on bovine alkaline phosphatases. Arch. of Biochem. a. Biophysics 37, 419 (1952).Google Scholar
  1174. Zittle. CH. A., L. A. Wells and W. G. Blatt: Effect of sodium arsenate on phosphoesterase from calf intestinal mucosa. Arch. of Biochem. 13, 395 (1947).Google Scholar
  1175. Zorzoli, A., and R. E. Stowell: Comparison of the distribution of a hexose diphosphase with glycerophosphatase in different tissues. Anat. Rec. 97, 495 (1947).PubMedGoogle Scholar
  1176. Zucker, T. F., L. Hall and M. Young: Growth and calcification on a diet deficient in phosphate but otherwise adequate. J. Nutrit. 22, 139 (1941).Google Scholar
  1177. Zworykin, V. K., G. A. Morton, E. G. Ramberg, J. Hillier and A. W. Vance: Electron Optics and the Electron Microscope, 2. Aufl. New York: J. Wiley; London: Chapman-Hall 1946.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1955

Authors and Affiliations

  • Gottwalt Christian Hirsch
    • 1
  1. 1.GöttingenDeutschland

Personalised recommendations