Skip to main content

Effects of Nucleoside Cyclic Monophosphates on Some Enzymatic Processes, Antibody Synthesis, and Tumor Growth in Mice

  • Conference paper
  • 31 Accesses

Abstract

The metabolic activity of a cell is dependent on its enzymatic architecture. Factors disturbing this architecture can influence the synthesis and breakdown of macromolecules, needed for the functional integrity of the cell. The result is cell death, increased rate of cell proliferation, or an alteration of its biological character such as cell surface. The synthesis and the catalytic activity of enzymes are regulated by genes, which are under the influence of environmental signals, namely, hormones, metabolites, various types of ions, and so on.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allfrey, V. G. In Functional Biochemistry of Cell Structures, O. Linberg, ed., Vol. VI-2. Oxford: Pergamon Press, p. 127 (1961).

    Google Scholar 

  • Allfrey, V. G. In 15th Annual Symposium on The Molecular Basis of Neoplasia. Austin: the Univ. of Texas Press, p. 581 (1962).

    Google Scholar 

  • Allfrey, V. G., Littau, V. C., and Mirsky, A. E. “The Role of Histones in Regulating RNA Synthesis in Cell Nucleus,” Proc. Nat. Acad. Sci. (U.S.A.) 49:414–421 (1963).

    Article  CAS  Google Scholar 

  • Braun, W., and Ishizuka, M. “Antibody Formation: Reduced Responses After Administration of Excessive Amounts of Nonspecific Stimulators,” Proc. Nat. Acad. Sci. (U.S.A.) 68:1114–1116 (1971).

    Article  CAS  Google Scholar 

  • Brown, H. D., Chattopadhyay, S. K., and Mathews, W. S., et al. “Adenyl Cyclase Activity in Morris Hepatoma 7777, 7794A and 9618A”, Cancer Res. Biochim. Biophys. Acta 192:372–375 (1969).

    Article  CAS  Google Scholar 

  • Brown, H. D., Chattopadhyay, S. K., and Morris, H. P., et al. “Adenyl Cyclase Activity in Morris Hepatoma 7777, 7794 A and 9618A”, Cancer Res. 30:123–126 (1970).

    PubMed  CAS  Google Scholar 

  • Bürk, R. R. “Reduced Adenyl Cyclase Activity in a Polyoma Virus Transformed Cell Line,” Nature (London) 219:1272–1275 (1968).

    Article  Google Scholar 

  • Chandra, P. “Zyklisches Adenosinmonophosphat in der Klinik und Biochemie der zellulären Prozesse, der Immunantwort und Kanzerogenese,” Med. Welt 23:9–15 (1972).

    PubMed  CAS  Google Scholar 

  • Chandra, P., Gericke, D., and Wacker, A. “Effect of Nucleoside (3′,5′)-Monophosphates on Tumor Growth and Immunological Response in Mice.” VIIth International Congress of Chemotherapy, Prague (1971).

    Google Scholar 

  • Chandra, P., and Gericke, D. “Regulation des Tumorwachstums durch Adenosin-3′,5′-monophosphat,” Naturwissenschaften 59:205–209 (1972).

    Article  PubMed  CAS  Google Scholar 

  • DeChatelet, L. R., and McDonald, H. J. “Effect of in Vivo Administration of Oral Hypoglycemic Agents on Hepatic Protein Synthesis,” Proc. Soc. Exp. Biol. Med. 127:415–418 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Dianzani, F., Neri, P., and Zucca, M. “Effect of Dibutyryl Cyclic AMP on Interferon Production by Cells Treated with Viral or Nonviral Inducers,” Proc. Soc. Exp. Biol. Med. 140:1375–1378 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Friedman, R. M., and Pastan, I. “Interferon and Cyclic 3′,5′-Adenosine Monophosphate: Potentiation of Antiviral Activity,” Biochem. Biophys. Res. Commun. 36:735–740 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Gericke, D., Chandra, P., Haenzel, I., and Wacker, A. “Studies on the Effect of Nucleoside Cyclic 3′,5′-Monophosphates on Antibody Synthesis by Spleen Cells,” Hoppe-Seyler’s Z. Physiol. Chem. 351:305–308 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Hilz, H., Nolde, S., and Kaukel, E. “The Cytostatic Action of Cyclic Nucleotides and Pyridine Nucleotides.” VIIth International Congress of Chemotherapy, Prague. B-1.2/9 (1971).

    Google Scholar 

  • Huang, R. C., and Bonner, J. “Histone, a Suppressor of Chromosomal RNA Synthesis,” Proc. Nat. Acad. Sci. (U.S.A.) 48:1216–1222 (1962).

    Article  CAS  Google Scholar 

  • Ishizuka, M., Gafni, M., and Braun, W. “Cyclic AMP Effects on Antibody Formation and Their Similarities to Hormone-Mediated Events,” Proc. Soc. Exp. Biol. Med. 134:963–967 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Johnson, G. S., Friedman, R. M., and Pastan, I. “Restoration of Several Morphological Characteristics in Sarcoma Cells Treated with Cyclic AMP and Its Derivatives,” Proc. Nat. Acad. Sci. (U.S.A.) 68:425–429 (1971).

    Article  CAS  Google Scholar 

  • Langan, T. A., and Smith, L. K. “Histone Phosphorylation,” Fed. Proc. 26:603 (1967).

    Google Scholar 

  • Langan T. A. “Histone Phosphorylation: Stimulation by Adenosine 3′,5′-Monophosphate,” Science 162:579–580 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Langan, T. A. Phosphorylation of Proteins of the Cell Nucleus, 3rd Kettering Symposium, A. S. Pietro, M. R. Lamborg, and F. T. Kenney, eds. New York: Academic Press, pp. 101–118 (1968a).

    Google Scholar 

  • Langan, T. A. “Action of Adenosine 3′,5′-Monophosphate-Dependent Histone Kinase in Vivo,” J. Biol. Chem. 244:5763–5765 (1969).

    PubMed  CAS  Google Scholar 

  • Mishell, R. I., and Dutton, R. W. “Immunization of Normal Mouse Spleen Cell Suspensions in Vitro,” Science 153:1004–1006 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Ryan, W. L., and Heidrick, M. L. “Inhibition of Cell Growth in Vitro by Adenosine 3′,5′-Monophosphate,” Science 162:1484–1485 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Schröder, J., and Plagemann, P. G. W. “Cyclic 3′,5′-Nucleotide Phosphodiesterases of Novikoff Rat Hepatoma, Mouse L, and HeLa Cells Growing in Suspension Culture,” Cancer Res. 32:1082–1087 (1972).

    PubMed  Google Scholar 

  • Webb, D., Braun, W., and Plescia, O. J. “Antitumor Effects of Polynucleotides and Theophylline,” Cancer Res. 32:1814–1819 (1972).

    PubMed  CAS  Google Scholar 

  • Winchurch, R., Ishizuka, M., Webb, D., and Braun, W. “Adenyl Cyclase Activity of Spleen Cells Exposed to Immunoenhancing Synthetic Oligo-and Polynucleotides,” J. Immunol. 106:1399–1403 (1971).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chandra, P., Gericke, D., Becker, B. (1974). Effects of Nucleoside Cyclic Monophosphates on Some Enzymatic Processes, Antibody Synthesis, and Tumor Growth in Mice. In: Braun, W., Lichtenstein, L.M., Parker, C.W. (eds) Cyclic AMP, Cell Growth, and the Immune Response. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86026-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86026-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86028-7

  • Online ISBN: 978-3-642-86026-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics