Geometrically Non-Linear Creep Buckling of Bars

  • Michał Życzkowski
Part of the IUTAM Symposia book series (IUTAM)


There exist two fundamental approaches to the theory of creep buck ling. One, commonly used, consists of analyzing the deflections as a function of time (technical buckling); the bar is initially curved or eccentrically loaded and no problem of stability is formulated (N. J. Hoff [3], J. A. H. Hult [5], A. R. Rzhanitsyn [14,15] and others). The other approach, proposed by G. N. Rabotnov and S. A. Shestebikov [12], uses a dynamical criterion of stability of a straight bar. Recently S. A. Shestebikov [16] formulated a new stability criterion for a curved bar, connected with the sign of acceleration. This criterion may be used for unsteady creep; the case, of steady creep is always that of instability, according to Shestebikov’s criterion.


Collocation Method Dimensionless Time Deflection Curve Initial Deflection Auxiliary Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fletcher, A.: A table of complete elliptic integrals, Phil. Mag. 30, 516–519 (1940), Seventh Series.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Frazer, R. A., W. P. Jones and Sylvia W. Skan: Approximation to func tions and to solutions of differential equations, Rep. and Memor. nr. 1799, Aero. Res. Com., 1937.Google Scholar
  3. [3]
    Hoff, N. J.: Creep buckling, Aeron. Quart. 7, 1–20 (1966).Google Scholar
  4. [4]
    Hoff, N. J.: A survey of the theories of creep buckling, Proc. Third US Nat. Congr. Appl. Mech., Brown Univ. 1958, publ. Pergamon Press 1958.Google Scholar
  5. [5]
    Hult, J. A.: Creep buckling, Instn. Hallfasthetslära Kungl. Tekniska Hög-skolan, Publ. nr. Ill, Stockholm 1955.Google Scholar
  6. [6]
    Kempner, J., and P. V. Pohle: On the nonexistence of finite critical time for linear viscoelästic columns, J. Aero. Sci. 20, 572–573 (1953).MathSciNetGoogle Scholar
  7. [7]
    Libove, Ch.: Creep buckling of columns, J. Aero. sci. 19, 459 (1952).Google Scholar
  8. [8]
    Norton, F. H.: The creep of steel at high temperatures, New York: McGraw-Hill, 1929.Google Scholar
  9. [9]
    Odquist, F. K. G.: Primärkrypningens inverkan vid knäckning av strävor, Tekn. Tidskr. 84, nr. 29, (1954). 654. English summary: J. Appl. Mech. 21 (1954).Google Scholar
  10. [10]
    Patel, S. A.: Buckling of columns in the presence of creep, Aero. Quart. 7, 125–134. (1956)Google Scholar
  11. [11]
    Puwein, M. G.: Die mutierte Pendellänge, Öster. Ing.-Archiv 8, 54–55 (1954).Google Scholar
  12. [12]
    Rabotnqv, G. N., and S. A. Shesterikov: Creep stability of columns and plates, J. Mech. Phys. Solids 6, 27–34 (1957). Russian original: Prikl. Mat. Miech. 21, 406–412 (1957).MathSciNetCrossRefGoogle Scholar
  13. [13]
    Rozenblum, W. I.: Ustoichivost szhatogo stierzhnya v sostoyanii polzuchesti (Stability of compressed bar in the presence of creep), Inzhen. Sbornik 18, 99–104 (1954).Google Scholar
  14. [14]
    Rzhanitsyn, A. R.: Processy dieformirovanya konstrukcij iz uprugovyazkikh elementov, (Deformation of structures with viscoelästic elements), Dokl. Akad. Nauk SSSR, 52, 25 (1946).Google Scholar
  15. [15]
    Rzhanitsyn, A. R.: Nekotorye voprosy mekhaniki sistiem deformiruyush-chikhsya vo vremeni (Some problems of mechanics of systems deforming in time) Gostekhizdat, Moscow-Leningrad 1949.Google Scholar
  16. [16]
    Shesterikov, S. A.: O kriterii ustoichivosti pri polzuchesti (On the criterion of stability in the presence of creep), Prikl. Mat. Mekh. 23, 1101–1106 (1959).MathSciNetGoogle Scholar
  17. [17]
    Wnuk, M., and M. Życzkowsei: Application of the Puwein formula to the theory of buckling, Arch. Mech. Stos. 9, 293–300 (1957).zbMATHGoogle Scholar
  18. [18]
    Życzkowski, M.: Skończone ugietia mimośrodowo ściskanych pretów o krzywiźnie pierwotnej (Finite deflections of eccentrically compressed bars with initial curvature), Ksiega Jubil. Prof. W. Wierzbickiego, Warszawa 1959, PWN, 479–518. English Summary: Bull. Acad. Polon., Serie Sc. Techn. 7, 1 (1959).Google Scholar
  19. [19).
    Zyczkowski, M.: Some problems of creep buckling of homogeneous and non-homogeneous bars, Proc. Intern. Symposium on Non-Homogeneity in Elasti city and Plasticity, London: Pergamon Press 1959.Google Scholar
  20. [20]
    Zyczkowski, M.: Calki wzgledem modulu z kwadratów pelnych calek eliptycznych (Some integrals involving complete elliptic integrals squared), Zastosowania Matematyki 6, 67–80 (1961).MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag OHG., Berlin/Göttingen/Heidelberg 1962

Authors and Affiliations

  • Michał Życzkowski
    • 1
  1. 1.Technical University and Polish Academy of SciencesKrakówPoland

Personalised recommendations