Skip to main content

Investigation of Transient Creep in Thick-walled Tubes under Axially Symmetric Loading

  • Conference paper

Part of the book series: IUTAM Symposia ((IUTAM))

Summary

The feasibility of a numerical analysis of nonstationary creep pro blems is investigated for thick-walled tubes under axially symmetric loading. It is shown how approximate solutions may be obtained with the aid of automatic digital computers by means of a numerical method ; based upon the application of an extremum principle for the rate of deformation. The primary creep phase can be included in the analysis if creep equations based upon the concept of microscopic inhomogeneity of the material give an adequate description of this phenomenon.

As an illustration of the method here presented the exact integrodifferential equation for the transition from the elastic to the steady state creep solution in the case of an incompressible material, showing only secondary creep governed by a power law in the stress, has been solved numerically for four combinations of the parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A :

matrix of coefficients of unknowns

C :

bulk modulus of elasticity

G :

modulus of rigidity

I 2 :

second invariant of elastic strain tensor I 2 = 1/2 (e α β-ē α β) ( α -ēβ α)

J 2 :

second invariant of strain rate tensor J 2 = 1/2 ė α β ėβ α

N :

number of subelements of element of volume

T :

absolute temperature

T c :

characteristic temperature of creepprocess

V :

volume

a i :

deformation parameter

b, c, d :

column vectors

e ij :

strain-deviation tensor, e ij = ε ij - ε δ ij, e αα = 0

ē ij :

inelastic strain tensor

f(I 2):

function determining stress dependence of creep rate

g(T):

function determining temperature dependence of creep rate

h (J 2, T):

function determining dependence of I2 on J2 and T

p :

constant appearing in f(I 2)

p 1 :

internal pressure on tube

p 2 :

external pressure on tube

p a :

pressure determining total axial force in tube by p a r 21 /2

q :

exponent of power law in the stress for creep rate

q′:

temperature corrected exponent

r :

radial coordinate

r 1 :

inner radius of tube

r 2 :

outer radius of tube

s ij :

stress-deviation tensor, s ij = σ ij - σ δ ij , s αα = 0

t :

time

u i :

displacement field

u :

radial displacement

v′, w′:

row vectors

x i :

rectangular cartesian coordinates

x :

radial component of elastic strain deviator, x = e r - ē r

y :

tangential component of elastic strain deviator, y = e t - ē t

α :

coefficient of cubic thermal expansion

δ ij :

Kronecker delta, δ ij = 1 if i = j, δ ij = 0 if ij

ε ij :

strain tensor

ε :

isotropic strain, 3 ε = ε αα

x :

ratio of bulk modulus of elasticity and modulus of rigidity, x = C/G

λ :

ratio of outer and inner radio of tube, λ - r 2/r 1

ϱ :

non-dimensional radial coordinate, ϱ = r/r 1

σ ij :

stress tensor

τ :

isotropic stress, 3 σ = σ αα

σ:

temperature corrected non-dimensional time parameter

ψ k :

portion of the volume occupied by subelements of class k

References

  1. Bailey, R. W.: The Utilization of Creep Test Data in Engineering Design Proe. Inst. Mech. Engrs., 131, 131–349 (1935).

    Article  Google Scholar 

  2. Sodebbekg, C. R.: Interpretation of Creep Tests for Machine Design, Trans. ASME, 58, 733 (1936).

    Google Scholar 

  3. Coffin, L. E., P. R. Shepleb and G. S. Cherniak: Primary Creep in the Design of Internal Pressure Vessels, J. Appl. Mechanics, 16, no. 3, 229–241 (1949).

    Google Scholar 

  4. Voorhees, H. R., C. M. Sliepcevitch and J. W. Freeman: Thick-Walled Pressure Vessels, Ind. Eng. Chem. 48, 872 (1956).

    Article  Google Scholar 

  5. Besseling, J. P.: A Theory of Elastic, Plastic, and Creep Deformations of an Initially Isotropic Material, J. Appl. Mechanics, 25, no. 4, 529–536 (1958).

    MATH  Google Scholar 

  6. Besseling, J. P.: Thermodynamic Foundations of the Theory of Deformation, Proc. Durand Centennial, Oxford: Pergamon Press Ltd., 1960.

    Google Scholar 

  7. Odqvist, F. K. G.: Theory of Creep under the Action of Combined Stresses with Applications to High-Temperature Machinery, Proc. Roy. Swed. Inst. Eng. Res., no. 141, 1–31 (1936).

    Google Scholar 

  8. Dorn, J. E.: Some Fundamental Experiments of High-Temperature Creep, Journal of Mechanics and Physics of Solids, 3, no. 2, 85 (1954).

    Article  Google Scholar 

  9. Sherby, O. D., J. L. Lytton and J. E. Dorn: Activation Energies for Creep of High-Purity Aluminium, Acta Metallurgica, 5, 219–227 (1957).

    Article  Google Scholar 

  10. Wang, A. J., and W. Prager: Thermal and Creep Effects in Work-Harde ning Elastic-Plastic Solids, Journal of the Aeronautical Sciences, 21, no. 5, 343–344, 360 (1954).

    MathSciNet  MATH  Google Scholar 

  11. Besseling, J. F.: A Theory of Small Deformations of Solid Bodies, SUDAER no. 84, AFOSR TN-59–605, ASTIA no. 217.172, Stanford University, February 1959.

    Google Scholar 

  12. Finnie, I., and W. R. Heller: Creep of Engineering Materials, New York, Toronto, London: McGraw Hill Book Comp., Inc. 1959, p. 185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer-Verlag OHG., Berlin/Göttingen/Heidelberg

About this paper

Cite this paper

Besseling, J.F. (1962). Investigation of Transient Creep in Thick-walled Tubes under Axially Symmetric Loading. In: Hoff, N.J. (eds) Creep in Structures. IUTAM Symposia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86014-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86014-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86016-4

  • Online ISBN: 978-3-642-86014-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics