Advertisement

Irreversibility and Dissipativity of Quantum Systems

  • I. Prigogine
  • A. P. Grecos

Abstract

We review some basic properties of the general collision operator as defined in our theory and its relation to the invariants of the motion of a large quantum system. The necessity of the dissipativity condition is shown for the possibility of kinetic description where the L · t-invariance of the von Neumann equation is broken. We illustrate this condition by a number of simple models where the collision operator can be calculated in a rigorous (non-perturbative) way.

Keywords

Quantum System Continuous Spectrum Null Space Collision Operator Kinetic Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prigogine, I.: Non-Equilibrium Statistical Mechanics. New York: Interscience 1962.MATHGoogle Scholar
  2. 2.
    Rae, J., Davidson, R.: J. Math. Phys. (to appear).Google Scholar
  3. 3.
    Baus, M.: Bull. Classe Sci., Acad. Roy. Belg. 53, 1291, 1332, 1352 (1967).MATHGoogle Scholar
  4. 4.
    Baus, M.: Thesis, Free University of Brussels (1968).Google Scholar
  5. 5.
    Prigogine, I., George, Cl., Henin, F.: Physica 45, 418 (1969).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Prigogine, I., George, Cl., Henin, F., Rosenfeld, L.: To appear Proc. Roy. Swedish Ac. Sc. (1972).Google Scholar
  7. 7.
    Prigogine, I.: The Statistical Interpretation of Non-equilibrium Entropy. Report presented in the conference “100 years Boltzmann Equation”, to appear in Austr. Phys. Acta (1972).Google Scholar
  8. 8.
    Prigogine, I., George, Cl., Henin, F.: Proc. Nat. Acad. Sci. 65, 789 (1970). Balescu, R., Clavin, P., Mandel, P., Turner, J.: Bull. Classe Sci. Acad. Roy. Belg. 55, 50 (1970). Grecos, A.: Physica 51, 50 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Reprinted by Dover Publ., New York 1957.Google Scholar
  10. 10.
    Shimizu, T.: Progr. Theoret. Phys. (Kyoto) 47, 1181 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    Friedrichs, K.: Comm. Pure Appl. Math. 1, 361 (1948).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Grecos, A., Prigogine, L: Physica 59, 77 (1972).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Stey, G., Gibberd, R.: Physica 60, 1 (1972).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Grecos, A., Prigogine, L: Proc. Nat. Acad. Sci. 69, 1629 (1972).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Stey, G.: Physica, to appear (1973).Google Scholar
  16. 16.
    Balescu, R.: Physica 27, 693 (1961).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • I. Prigogine
    • 1
    • 2
  • A. P. Grecos
    • 1
  1. 1.Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Center for Statistical Mechanics and ThermodynamicsThe University of Texas at AustinAustinUSA

Personalised recommendations