Electrically Induced Stresses in Dielectric Fluids

  • B. K. P. Scaife

Abstract

The macroscopic theory of electrically induced stresses can fairly be said to be complete [1–4]. Some work has been done on the microscopic theory of such phenomena [5]. Despite the well established nature of the basic theory of electrostrictive phenomena one still finds disagreement in the literature [6], as to how the basic theory should be applied. Furthermore it is not unusual to find considerable confusion as to precisely what is predicted by theory in any particular case.

Keywords

Sine Suffix Prolate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pockels, F.: Encyklopädie der mathematischen Wissenschaften, Vol. 5, Part 2, p. 350. Leipzig: Teubner 1906.Google Scholar
  2. 2.
    Jeans, J. H.: The Mathematical Theory of Electricity and Magnetism, 5th Ed., Chap. 6, p. 140. Cambridge: University Press 1925.Google Scholar
  3. 3a.
    Stratton, J. A.: Electromagnetic Theory, Chap. 2, p. 139. New York: McGraw-Hill Book Company Inc. 1941.MATHGoogle Scholar
  4. 3b.
    Stratton, J. A.: Electromagnetic Theory, Chap. 3, p. 214. New York: McGraw-Hill Book Company Inc. 1941.MATHGoogle Scholar
  5. 4.
    Panofsky, W. K. H., Phillips, M.: Classical Electricity and Magnetism, Chap. 6, p. 86. Cambridge, Mass.: Addison-Wesley Publishing Company, Inc. 1955.MATHGoogle Scholar
  6. 5.
    Scaife, B. K. P.: Proc. Phys. Soc. (London) B 69, 153 (1956).ADSMATHCrossRefGoogle Scholar
  7. 6.
    Garton, C. G., Krasucki, Z.: Proc. Roy. Soc. (London), Ser. A 280, 211 (1964).ADSCrossRefGoogle Scholar
  8. 7a.
    Fröhlich, H.: Theory of Dielectrics, 2nd Ed., Chap. 2, p. 26. Oxford: Clarendon Press 1958.MATHGoogle Scholar
  9. 7b.
    Fröhlich, H.: Theory of Dielectrics, 2nd Ed., Cap. 2, p. 35. Oxford: Clarendon Press 1958.MATHGoogle Scholar
  10. 7c.
    Fröhlich, H.: Theory of Dielectrics, 2nd Ed., Chap. 2, p. 36. Oxford: Clarendon Press 1958.MATHGoogle Scholar
  11. 8.
    Chapman, S., Cowling, T. G.: The Mathematical Theory of Non-Uniform Gases, 2nd Ed., Chap. 16, p. 285. Cambridge: University Press 1952.Google Scholar
  12. 9.
    Green, H. S.: The Molecular Theory of Fluids, Chap. 2, p. 52. Amsterdam: North-Holland Publishing Company 1952.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • B. K. P. Scaife
    • 1
  1. 1.Engineering SchoolTrinity CollegeDublinIreland

Personalised recommendations