Ratios of Laplace Transforms, Mikusiński Operational Calculus

  • Gregers Krabbe


Mikusiński’s theory of convolution quotients [7, 8] yields uniqueness theorems for various kinds of boundary-value problems; further, his theory justifies the standard Heaviside calculations — without the un-necessary assumptions required by Laplace transform techniques. On the other hand, many operational formulas are easier to find by means of the Laplace transformation; especially useful are the inversion formulas and the method of residues.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Berg, L.: Einführung in die Operatorenrechnung. Berlin: VEB Deutscher Verlag der Wissensch. 1962.Google Scholar
  2. [2]
    Berg, L.: Asymptotische Auffassung der Operatorenrechnung. Studia Math. 21, 215–229 (1961/62).Google Scholar
  3. [3]
    Ditkin, W. A.: Zur Theorie der Operationsberechnung. Dokl. Akad. Nauk SSSR 123, 395–396 (1958).Google Scholar
  4. [4]
    Doetsch, G.; Handbuch der Laplace-Transformation, Band I, Theorie der Laplace- Transformation. Basel: Birkhäuser 1950.Google Scholar
  5. [5]
    Hille, E.: Analytic function theory, vol. II. Boston: Ginn and Co. 1962.Google Scholar
  6. [6]
    Hille, E.: Comptes rendus du Huitième Congrès des mathématiciens scandinaves tenu a Stockholm 14–18 Aoüt 1934. Lund 1935.Google Scholar
  7. [7]
    Mikusinski, J.: Operational calculus, Fifth edition. Warszawa: Pergamon Press 1959.Google Scholar
  8. [8]
    Mikusinski, J.: Sur les fondements du calcul opératoire. Studia Math. 11, 41–70 (1950).Google Scholar
  9. [9]
    Mikusinski, J., and C. Ryll-Nardzewsi: Sur l’opérateur de translation. Studia Math. 12, 205–207 (1951).Google Scholar
  10. [10]
    Rjabcev, I. I.: Über die Struktur der Mikusinski-Operatoren in einem pseudo-normierten Raum. Izv. Vyssch. Utchebn. Zavedenij Matematika 1958, no. 1 (2), 143–151.Google Scholar
  11. [11]
    Rjabcev, I. I.: Lokale Eigenschaften von Mikusinski-Operatoren. Izv. Vyssch. Utchebn. Zave denij Matematika No. 3 (28), 143–150 (1962).Google Scholar
  12. [12]
    Schwartz, L.: Méthodes mathématiques pour les sciences physiques. Paris: Hermann 1961.Google Scholar
  13. [13]
    Weston, J. D.: An extension of the Laplace-transform calculus. Rend. Circ. Mat. Palermo (2) 6, 325–333 (1957).CrossRefGoogle Scholar
  14. [14]
    Weston, J. D.: Operational calculus and generalized functions. Proc. Royal Soc. Ser. A, 250, 460–471 (1959).CrossRefGoogle Scholar
  15. [15]
    Weston, J. D.: Characterizations of Laplace transforms and perfect operators. Archive Rat. Mech. Analysis 3, 348–354 (1959).CrossRefGoogle Scholar
  16. [16]
    Weston, J. D.: Positive perfect operators. Proc. London Math. Soc., Ser. 3, 10, 545–565 (1960).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1966

Authors and Affiliations

  • Gregers Krabbe
    • 1
  1. 1.LafayetteUSA

Personalised recommendations