Advertisement

Ratios of Laplace Transforms, Mikusiński Operational Calculus

  • Gregers Krabbe

Abstract

Mikusiński’s theory of convolution quotients [7, 8] yields uniqueness theorems for various kinds of boundary-value problems; further, his theory justifies the standard Heaviside calculations — without the un-necessary assumptions required by Laplace transform techniques. On the other hand, many operational formulas are easier to find by means of the Laplace transformation; especially useful are the inversion formulas and the method of residues.

Keywords

Meromorphic Function Integral Domain Laplace Transformation Studia Math Operational Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Berg, L.: Einführung in die Operatorenrechnung. Berlin: VEB Deutscher Verlag der Wissensch. 1962.Google Scholar
  2. [2]
    Berg, L.: Asymptotische Auffassung der Operatorenrechnung. Studia Math. 21, 215–229 (1961/62).Google Scholar
  3. [3]
    Ditkin, W. A.: Zur Theorie der Operationsberechnung. Dokl. Akad. Nauk SSSR 123, 395–396 (1958).Google Scholar
  4. [4]
    Doetsch, G.; Handbuch der Laplace-Transformation, Band I, Theorie der Laplace- Transformation. Basel: Birkhäuser 1950.Google Scholar
  5. [5]
    Hille, E.: Analytic function theory, vol. II. Boston: Ginn and Co. 1962.Google Scholar
  6. [6]
    Hille, E.: Comptes rendus du Huitième Congrès des mathématiciens scandinaves tenu a Stockholm 14–18 Aoüt 1934. Lund 1935.Google Scholar
  7. [7]
    Mikusinski, J.: Operational calculus, Fifth edition. Warszawa: Pergamon Press 1959.Google Scholar
  8. [8]
    Mikusinski, J.: Sur les fondements du calcul opératoire. Studia Math. 11, 41–70 (1950).Google Scholar
  9. [9]
    Mikusinski, J., and C. Ryll-Nardzewsi: Sur l’opérateur de translation. Studia Math. 12, 205–207 (1951).Google Scholar
  10. [10]
    Rjabcev, I. I.: Über die Struktur der Mikusinski-Operatoren in einem pseudo-normierten Raum. Izv. Vyssch. Utchebn. Zavedenij Matematika 1958, no. 1 (2), 143–151.Google Scholar
  11. [11]
    Rjabcev, I. I.: Lokale Eigenschaften von Mikusinski-Operatoren. Izv. Vyssch. Utchebn. Zave denij Matematika No. 3 (28), 143–150 (1962).Google Scholar
  12. [12]
    Schwartz, L.: Méthodes mathématiques pour les sciences physiques. Paris: Hermann 1961.Google Scholar
  13. [13]
    Weston, J. D.: An extension of the Laplace-transform calculus. Rend. Circ. Mat. Palermo (2) 6, 325–333 (1957).CrossRefGoogle Scholar
  14. [14]
    Weston, J. D.: Operational calculus and generalized functions. Proc. Royal Soc. Ser. A, 250, 460–471 (1959).CrossRefGoogle Scholar
  15. [15]
    Weston, J. D.: Characterizations of Laplace transforms and perfect operators. Archive Rat. Mech. Analysis 3, 348–354 (1959).CrossRefGoogle Scholar
  16. [16]
    Weston, J. D.: Positive perfect operators. Proc. London Math. Soc., Ser. 3, 10, 545–565 (1960).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1966

Authors and Affiliations

  • Gregers Krabbe
    • 1
  1. 1.LafayetteUSA

Personalised recommendations