New Algorithms for Determining Optimal Control: A Differential Dynamic Programming Approach

  • D. H. Jacobson
Conference paper
Part of the Lecture Notes in Operations Research and Mathematical Economics book series (LNE, volume 14)

Abstract

Differential Dynamic Programming is a successive approximation technique, based on Dynamic Programming rather than the Calculus of Variations, for determining optimal control of non-linear systems. In each iteration, the system equations are integrated in forward time using the current nominal control, and accessory equations which yield the coefficients of a linear or quadratic expansion of the cost function in the neighbourhood of the nominal trajectory are integrated in reverse time, yielding an improved control law. This control law is applied to the system equations, producing a new, improved trajectory. By continued iteration, the procedure produces control functions which successively approximate to the optimal control function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Mayne, D. Q., hit. J. Control, 3 (1966) 85.CrossRefGoogle Scholar
  2. (2).
    McReynolds, S. R. and Bryson, A. E., Proc. 6th Joint Auto. Cont. Conf., Troy, New York, 1965, p. 551.Google Scholar
  3. (3).
    Mitter, S. K., Automatica, 3 (1966) 135.CrossRefGoogle Scholar
  4. (4).
    Jacobson, D. H., Int. J. Control, 7 (1968) 175.CrossRefGoogle Scholar
  5. (5).
    McReynolds, S. R., J. Math. Anal. Appl., 19 (1967) 565.CrossRefGoogle Scholar
  6. (6).
    Jacobson, D. H., J. Opt. Theory Appl., 2 (1968) in press.Google Scholar
  7. (7).
    Jacobson, D. H., IEEE Trans. Auto. Control, 13 (1968) in press.Google Scholar
  8. (8).
    Jacobson, D. H. and Mayne, D. Q. Proc. 4th Congress of Int. Fed. Auto. Control, Warsaw, 1969.Google Scholar
  9. (9).
    Jacobson, D. H. and Mayne, D. Q Differential Dynamic Programming, American Elsevier, New York, 1969, to appear.Google Scholar
  10. (10).
    Dyer, P. and McReynolds, S. R., J. Math. Anal. Appl., to appear.Google Scholar
  11. (11).
    Gershwin, S. B. and Jacobson, D. H., Technical Report No. 566, Division of Engineering and Applied Physics, Harvard University, August 1968.Google Scholar
  12. (12).
    Mayne, D. Q., J. Inst. Math. Applic., 3 (1967) 46.Google Scholar
  13. (13).
    Westcott, J. H., Mayne, D. Q., Bryant, G. F. and Mitter, S. K., Proc. 3rd Congress of Int. Fed. Auto. Control, London, 1966.Google Scholar
  14. (14).
    Jacobson, D. H., to appear.Google Scholar
  15. (15).
    Jacobson, D. H. and Lele, M. M., to appear.Google Scholar
  16. (16).
    Lasdon, L. S. Mitter, S. K. and Waren, A. D., IEEE Trans. Auto. Control, 12 (1967) 132.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • D. H. Jacobson
    • 1
  1. 1.Division of Engineering and Applied PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations