Skip to main content

Sparse Matrix Aspects of the Finite Element Method

  • Conference paper
Computing Methods in Applied Sciences and Engineering

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 134))

Abstract

The application of the finite element method invariably involves the solution of large sparse systems of linear algebraic equations, and the solution of these systems often represents a significant or even dominant component of the total cost of applying the method. The object of this paper is to describe and relate various sparse matrix techniques which have been developed to make the solution of these equations more efficient.

Work supported in part by Canadian National Research Council Grant A8111.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.O. Araldsen, “The application of the superelement method in the analysis and design of ship structures and machinery components’, National Symposium of Computerized Structural Analysis and Design, George Washington University, March 1971.

    Google Scholar 

  2. J.H. Argyris and O.E. Bronlund, “The natural factor formulation of the stiffness for the matrix displacement method”, Computer Methods in Applied Mechanics and Engineering 5 (1975), pp. 97–119.

    Article  MATH  Google Scholar 

  3. E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices”, Proc. 24th Nat. Conf., Assoc. Comput. Mach., ACM Publ. P-69, 1969.

    Google Scholar 

  4. Carlos A. Felippa, “Solution of linear equations with skyline-stored symmetric matrix”, Computers and Structures, 5 (1975), pp. 13–29.

    Article  MATH  Google Scholar 

  5. C. Felippa and R.W. Clough, “The finite element method in solid mechanics” pp.210–252 of Numerical Solution of Field Problems in Continuum Mechanics, (G. Birkhoff and R.S. Varga, eds.), SIAM-AMS Proceedings, American Math. Society, Providence, Rhode Island, 1970.

    Google Scholar 

  6. G. von Fuchs, J.R. Roy, and E. Schrem, “Hypermatrix solution of large sets of symmetric positive-definite linear equations”, Computer Methods in Applied Mechanics and Engineering 1 (1972), pp. 197–216.

    Article  MATH  Google Scholar 

  7. Alan George, “Nested dissection of a regular finite element mesh”, SIAM J. Humer. Anal., 10 (1973), pp. 345–363.

    Article  MATH  Google Scholar 

  8. Alan George and Joseph W.H. Liu, “An automatic partitioning and solution scheme for solving sparse positive definite systems of linear algebraic systems”, Trans. on Math. Software, to appear.

    Google Scholar 

  9. Alan George, “On block elimination for sparse linear systems”, SIAM J. Numer. Anal., 11 (1974), pp. 585–603.

    Article  Google Scholar 

  10. Alan George, “Numerical experiments using dissection methods to solve n by n grid problems”, Research Report CS-75–07, University of Waterloo, March 1975.

    Google Scholar 

  11. Alan George and Joseph W.H. Liu, “A note on fill for sparse matrices”, SIAM J. Humer. Anal., 12 (1975), pp. 452–455.

    Article  MathSciNet  MATH  Google Scholar 

  12. N.E. Gibbs, W.G. Poole, and P.K. Stockmeyer, “An algorithm for reducing the bandwidth and profile of a sparse matrix”, SIAM J. Numer. Anal., to appear.

    Google Scholar 

  13. G. Hachtel, “The sparse tableau approach to finite element assembly”, Sparse Matrix Computations, Plenum Press, N.Y., 1976.

    Google Scholar 

  14. M.J.L. Hussey, R.W. Thatcher, and M.J.M. Bernal. “Construction and use of finite elements”, JIMA, 6 (1970), pp. 262–283.

    MathSciNet  Google Scholar 

  15. B. Irons, “A frontal solution program for finite element analysis”, Internat. J. Humer. Meth. Engrg., 2 (1970), pp. 5–32.

    Article  MATH  Google Scholar 

  16. A. Jennings, “A compact storage scheme for the solution of symmetric simultaneous equations”, Comput. J., 9 (1966), pp. 281–285.

    Article  MATH  Google Scholar 

  17. A. Jennings and A.D. Tuff, “A direct method for the solution of large sparse symmetric simultaneous equations” in Large Sparse Sets of Linear Equations (J.K. Reid, editor ), Academic Press, 1971.

    Google Scholar 

  18. I.P. King, “An automatic reordering scheme for simultaneous equations derived from network problems”, Internat. J. Numer. Meth. Engrg., 2 (1970), pp. 523–533.

    Article  Google Scholar 

  19. R.J. Melosh and R.M. Bamford, “Efficient solution of load deflection equations”, J. Struct. Div., ASCE, Proc. Paper No. 6510, (1969), pp. 661–676.

    Google Scholar 

  20. Christian Meyer, “Solution of linear equations–State-of-the-art”, J. of the Struct. Div., ASCE, Proc. Paper 9861, July 1973, pp. 1507–1527.

    Google Scholar 

  21. B. Speelpenning, “The generalized element method”, unpublished manuscript.

    Google Scholar 

  22. J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England, 1965.

    Google Scholar 

  23. J.H. Wilkinson and C. Reinsch, Handbook for Automatic Computation, vol.Il, Linear Algebra, Springer Verlag, 1971.

    Book  Google Scholar 

  24. F.W. Williams, “Comparison between sparse stiffness matrix and sub-structure methods”, Internat. J. Numer. Meth. Engrg., 5 (1973), pp. 383–394.

    Article  MATH  Google Scholar 

  25. E.L. Wilson, K.L. Bathe, and W.P. Doherty, “Direct solution of large systems of linear equations”, Computers and Structures, 4 (1974), pp. 363–372.

    Article  MathSciNet  Google Scholar 

  26. C. Zienkfewicz, The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971.

    Google Scholar 

  27. M. Tibial, “A finite element procedure for the second order of accuracy”, Humer. Math., 14 (1970), pp. 394–402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

George, A. (1976). Sparse Matrix Aspects of the Finite Element Method. In: Glowinski, R., Lions, J.L. (eds) Computing Methods in Applied Sciences and Engineering. Lecture Notes in Economics and Mathematical Systems, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85972-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85972-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07990-3

  • Online ISBN: 978-3-642-85972-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics