Collisional Kinetic Models of Multispecies Plasmas in Nonuniform Magnetic Fields

  • J. Killeen
  • G. D. Kerbel
  • M. G. McCoy
  • A. A. Mirin
Part of the Springer Series in Computational Physics book series (SCIENTCOMP)


It is generally the case in magnetic fusion devices that the magnetic field is nonuniform, but varies weakly on the scale of the gyro-motion, the fastest nearly recurrent motion of the charged particles comprising the plasma. However, motion along the direction of the field inexorably carries the particle through finite variations of the field, and the environment in which the charged particle is immersed as it executes its motion may vary significantly with these field variations. It is often necessary to consider this nonuniformity in order to involve salient features distinctive of a particular device in phenomena in which they play a significant role.


Velocity Space Minor Radius Nonuniform Magnetic Field Trap Orbit Radio Frequency Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Abramowitz and I. Stegun (ed.), Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series, Number 55, US Government Printing Office, Washington, DC, 446 (1968).Google Scholar
  2. D. B. Batchelor and R. C. Goldfinger, Rays: A Geometrical Optics Code for EBT, ORNL/TM-6844 (1982).Google Scholar
  3. H. L. Berk, Plasma Phys., 20, 205 (1978).ADSCrossRefGoogle Scholar
  4. I. B. Bernstein, Phys. Rev., 109, 10 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  5. I. B. Bernstein and D. C. Baxter, Phys. Fluids, 24, 108 (1981).MathSciNetADSMATHCrossRefGoogle Scholar
  6. D. T. Blackfield and J. E. Scharer, Nucl. Fusion, 22, 255 (1982).CrossRefGoogle Scholar
  7. K. H. Burrell, J. Comput. Phys., 27, 98 (1978).ADSCrossRefGoogle Scholar
  8. B. I. Cohen, R. H. Cohen, and T. D. Ronglien,Phys. Fluids, 26, 808 (1983).ADSMATHCrossRefGoogle Scholar
  9. P. L. Colestock and R. J. Kashuba, Nucl. Fusion, 23, 763 (1983).CrossRefGoogle Scholar
  10. J. W. Connor, R. C. Grimm, R. J. Hastie, and P. M. Keeping, Nucl. Fusion, 13, 211 (1973).CrossRefGoogle Scholar
  11. B. Coppi and D. J. Sigmar, Phys. Fluids, 16, 1174 (1973).ADSCrossRefGoogle Scholar
  12. J. G. Cordey, K. D. Marx, M. G. McCoy, A. A. Minn, and M. E. Rensink, J. Comput. Phys., 28, 115 (1978).MathSciNetADSCrossRefGoogle Scholar
  13. T. A. Cutler, L. D. Pearlstein, and M. E. Rensink, Computation of the Bounce Average Code, UCRL-52233, LLL. (1977).CrossRefGoogle Scholar
  14. H. Dreicer, Phys. Rev., 115, 23 (1959); and 117, 329 (1960).MathSciNetADSCrossRefGoogle Scholar
  15. N. J. Fisch, PPPL-1684 and PPPL-1692 (1980).Google Scholar
  16. N. J. Fisch and A. Bers, Third Topical Meeting on RF Plasma Heating, Caltech (1978).Google Scholar
  17. N. J. Fisch and C. F. Karney, Phys. Fluids, 24, 27 (1981).ADSMATHCrossRefGoogle Scholar
  18. R. J. Goldston, Ph.D. Thesis, Princeton University, Princeton, NJ (1977).Google Scholar
  19. G. W. Hammett, J. C. Hosea, R. J. Goldston, D. Q. Hwang, R. Kaita, D. M. Manos, S. Kilpatrick, and J. R. Wilson, 25 Conference of the American Physical Society Division of Plasma Physics, Los Angeles (1983).Google Scholar
  20. R. W. Harvey, K. D. Marx, and M. G. McCoy, Nucl. Fusion, 21, 153 (1981).ADSCrossRefGoogle Scholar
  21. F. L. Hinton and R. D. Hazeltine, Phys. Fluids, 48, 239 (1976).MathSciNetGoogle Scholar
  22. B. H. Hui, N. K. Winsor, and B. Coppi, Phys. Fluids, 20, 1275 (1977).ADSCrossRefGoogle Scholar
  23. D. Q. Hwang, C. F. Karney, J. C. Hosea, J. M. Hovey, C. E. Singer, and J. R. Wilson, PPPL 1990 (1983).Google Scholar
  24. R. Kaita, G. J. Goldston, P. Beiersdorfer, D. L. Herndon, J. Hosea, D. Q. Hwang, F. Jobes, D. D. Meyerhofer, and J. R. Wilson, Nucl. Fusion, 23, 1089 (1983).CrossRefGoogle Scholar
  25. A. N. Kaufman, Phys. Fluids, 15, 1063 (1972).ADSCrossRefGoogle Scholar
  26. C. F. Kennel and F. Englemann, Phys. Fluids, 9, 2377 (1966).ADSCrossRefGoogle Scholar
  27. G. D. Kerbel and M. G. McCoy, Comput. Phys. Commun., to be published, May 1986.Google Scholar
  28. J. Kesner, Nucl. Fusion, 18, 781 (1978).ADSCrossRefGoogle Scholar
  29. M. Kruskal, J. Math. Phys., 3, 806 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  30. Y. Matsuda and J. J. Stewart. A Relativistic Multiregion Bounce-Averaged Fokker-Planck Code For Mirror Plasmas, UCRL-92313, (1985).Google Scholar
  31. M. E. Mauel, Ph.D. Thesis, MIT, Cambridge, MA (1982); also PFC/RR-82–29 (1982).Google Scholar
  32. F. W. Perkins, E. J. Valeo, D. C. Eder, D. Q. Hwang, A. Kritz, C. K. Phillips, Y. C. Sun, D. G. Swanson, G. D. Kerbel, M. G. McCoy, J. Killeen, R. W. Harvey, S. C. Chiu, K. Hizanidis, V. Krapchev, D. Hewett, and A. Bers, Plasma Physics and Controlled Nuclear Fusion Research, 1984, 1, 513 (1985).Google Scholar
  33. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, ed., Interscience, New York, 1967.MATHGoogle Scholar
  34. M. M. Rosenbluth, R. D. Hazeltine, and F. L. Hinton, Phys. Fluids, 15, 116 (1972).ADSCrossRefGoogle Scholar
  35. M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev., 107, 1 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  36. J. E. Scharer, J. B. Beyer, D. T. Blackfield, and T. K. Mau, Nucl. Fusion, 19, 1171 (1979).ADSCrossRefGoogle Scholar
  37. L. Spitzer, Physics of Fully Ionized Gases, Interscience, New York, 1967.Google Scholar
  38. L. Spitzer and R. Härm, Phys. Rev., 89, 977 (1953).ADSMATHCrossRefGoogle Scholar
  39. T. H. Stix, The Theory of Plasma Waves, McGraw-Hill, New York, 1962.MATHGoogle Scholar
  40. T. H. Stix, Nucl. Fusion, 15, 737 (1975).ADSCrossRefGoogle Scholar
  41. R. E. Stockdale, private communication (1983).Google Scholar
  42. D. G. Swanson, Nucl. Fusion, 23, 949 (1980).ADSCrossRefGoogle Scholar
  43. D. G. Swanson, Phys. Fluids, 24, 2038 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • J. Killeen
    • 1
  • G. D. Kerbel
    • 1
  • M. G. McCoy
    • 1
  • A. A. Mirin
    • 1
  1. 1.Lawrence Livermore National Laboratory, National MFE Computer CenterUniversity of CaliforniaLivermoreUSA

Personalised recommendations