Finite-Difference Methods

  • Roger Peyret
  • Thomas D. Taylor
Part of the Springer Series in Computational Physics book series (SCIENTCOMP)

Abstract

Until recently, numerical methods for solving fluid-flow problems have been dominated by finite-difference approximations. These methods are powerful and play a major role in problem solutions. In this chapter we attempt to present the fundamental advances and insight into these methods. We begin by discussing the concept of discrete pointwise approximation of functions.

Keywords

Entropy Vorticity Advection Boulder laNI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, Y. Comput. Math. Appl. 1, 393–406 (1975).MATHCrossRefGoogle Scholar
  2. Adam, Y. J. Comput. Phys. 24, 10–22 (1977).MathSciNetADSMATHCrossRefGoogle Scholar
  3. Allen, J. S., and Cheng, S. I. Phys. Fluids 19, 37–52 (1970).ADSCrossRefGoogle Scholar
  4. Anucina, N. N., Soy. Math. 5, 60–64 (1964).Google Scholar
  5. Beam, R. M., and Warming, R. F., J. Comput. Phys. 22, 87–110 (1976).MathSciNetADSMATHCrossRefGoogle Scholar
  6. Beam, R. M., and Warming, R. F., AIM J. 16, 393–402 (1978).MATHGoogle Scholar
  7. Berger, A. E., Solomon, J. M., Ciment, M., Leventhal, S. H., and Weinberg, B. C. Math. Comput. 35, 695–731 (1980).MathSciNetCrossRefGoogle Scholar
  8. Berezin, Yu. A., Kovenja, V. M., and Yanenko, N. N. Numerical Mathematics in Continuum Mechanics (in Russian), Vol. 3, pp. 3–18, A. N. SSSR Siberian Computer Center, Novosibirsk (1972).Google Scholar
  9. Berezin, Yu. A., Kovenja, V. M., and Yanenko, N. N., Lecture Notes in Physics, Vol. 35, pp. 85–90, Springer-Verlag, New York (1975a).Google Scholar
  10. Berezin, Yu. A., Kovenja, V. M., and Yaneko, N. N. Comput. Fluids 3, 271–281 (1975b).MATHCrossRefGoogle Scholar
  11. Bontoux, P., Forestier, B., and Roux, B. J. Mec. Appl. 2, 291–316 (1978).MathSciNetGoogle Scholar
  12. Brailovskaya, I. Yu. Soy. Phys.—Dokl. 10, 107–110 (1965).ADSGoogle Scholar
  13. Bramble, J. H., and Hubbard, B. E. Numer. Math. 4, 312–327 (1962).MathSciNetCrossRefGoogle Scholar
  14. Briley, W. R., and McDonald, H. An Implicit Numerical Method for the Multidimensional Compressible Navier—Stokes Equations, United Aircraft Research Laboratory Rep. M911363–6 (Nov. 1973).Google Scholar
  15. Briley, W. R., and McDonald, H. Lecture Notes in Physics, Vol. 35, pp. 105–110, Springer—Verlag, New York (1975).Google Scholar
  16. Briley, W. R., and McDonald, H. J. Comput. Phys. 22, 372–397 (1977).MathSciNetADSCrossRefGoogle Scholar
  17. Briley, W. R., and McDonald, H. J. Comput. Phys. 34, 54–73 (1980).MathSciNetADSMATHCrossRefGoogle Scholar
  18. Cheng, S. I. A Critical Review of Numerical Solution of Navier—Stokes Equations. In Progress in Numerical Fluid Dynamics, Lecture Notes in Physics, Vol. 41, pp. 78–225 Springer—Verlag, New York (1975).Google Scholar
  19. Cheng, S. I., and Shubin, G. J. Comput. Phys. 28, 315–326 (1978).MathSciNetADSMATHCrossRefGoogle Scholar
  20. Ciment, M., Leventhal, S. H., and Weinberg, B. C., J. Comput. Phys. 28, 135–166 (1978).MathSciNetADSMATHCrossRefGoogle Scholar
  21. Collatz, L. The Numerical Treatment of Differential Equations, Springer—Verlag, New York (1966).Google Scholar
  22. Collatz, L. Hermitian Methods for Initial-Value Problems in Partial Differential Equations. In Topics in Numerical Analysis, Proceedings of the Royal Irish Academy Conference on Numerical Analysis, J. J. H. Miller, Ed., pp. 41–61, Academic Press, New York, (1972).Google Scholar
  23. Courant, R., Friedrichs, K. O., and Lewy, M. Math. Ann. 100, 32–76 (1928). (English translation) IBM J. Res. Devel. 11, 215–234 (1967).Google Scholar
  24. Courant, R., Isaacson, E., and Rees, M. Commun. Pure Appl. Math. 5, 243–255 (1952).MathSciNetMATHCrossRefGoogle Scholar
  25. Daube, O., and Ta Phuoc Loc, J. Mec. 17, 651–678 (1978).ADSMATHGoogle Scholar
  26. Dennis, S. C. R., and Chang, G. -Z. Phys. Fluids 12, Suppl. II, II. 83–1I. 93 (1969).Google Scholar
  27. Douglas, J., and Gunn, J. E. Numer. Math. 6, 428–453 (1964).MathSciNetMATHCrossRefGoogle Scholar
  28. Elsaesser, E. Etude de Méthodes Hermitiennes pour la Résolution des Equations de Navier—Stokes pour un Fluide Incompressible en Régime Stationnaire, Thèse Doct. 3’’’’ Cycle, Université Pierre et Marie Curie, Paris (1980).Google Scholar
  29. Elsaesser, E., and Peyret, R. Méthodes Hermitiennes pour la Résolution Numérique des Equations de Navier—Stokes. In Méthodes Numériques dans les Sciences de l’Ingénieur, E. Absi and R. Glowinski, Eds., pp. 249–258, Dunod, Paris (1979).Google Scholar
  30. Fairweather, G., and Mitchell, A. R. SIAM J. Numer. Anal. 4, 163–170 (1967).MathSciNetADSMATHCrossRefGoogle Scholar
  31. Garabedian, P. R., Math. Tables Aids Comput. 10, 183–185 (1956).MathSciNetMATHCrossRefGoogle Scholar
  32. Ghia, K. N., Shin, C. T., and Ghia, U. Use of Spline Approximation for Higher-Order Accurate Solutions of Navier—Stokes Equations in Primitive Variables. In Proc. 4th AIAA Computational Fluid Dynamics Conference, pp. 284–291, Williamsburg, VA. (1979).Google Scholar
  33. Godunov, S. K., and Ryabenski, V. S. The Theory of Difference Schemes, North-Holland, Amsterdam (1964).Google Scholar
  34. Gourlay, A. R., and Morris, J. L. Math. Comput. 22, 715–720 (1968).MathSciNetMATHCrossRefGoogle Scholar
  35. Gourlay, A. R., and Morris, J. L. J. Comput. Phys. 5, 229–243 (1970).MathSciNetADSMATHCrossRefGoogle Scholar
  36. Gustaffson, B. Math. Comput. 29, 396–406 (1975).MathSciNetCrossRefGoogle Scholar
  37. Harten, A., Hyman, J. M., and Lax, P. D. Commun. Pure Appt. Math. 29, 297–322 (1976).MathSciNetADSMATHCrossRefGoogle Scholar
  38. Hirsh, R. S. J. Comput. Phys. 19, 90–109 (1975).MathSciNetADSMATHCrossRefGoogle Scholar
  39. Hirt, C. W., J. Comput. Phys. 2, 339–355 (1968).ADSMATHCrossRefGoogle Scholar
  40. Hollanders, H., and Peyret, R. Rech. Aérosp. No. 1981–4, 287–294 (1981).Google Scholar
  41. Isaacson, E. and Keller, H. B. Analysis of Numerical Methods, Wiley and Sons, New York (1966).MATHGoogle Scholar
  42. Khosla, P. M., and Rubin, S. G. Comput. Fluids 2, 207–209 (1974).MATHCrossRefGoogle Scholar
  43. Krause, E., Hirschel, E. H., and Kordulla, W. Comput. Fluids 4, 77–92 (1976).MathSciNetADSMATHCrossRefGoogle Scholar
  44. Kreiss, H. O. Math. Comput. 26, 605–624 (1972).MathSciNetMATHCrossRefGoogle Scholar
  45. Kreiss, H. O., and Oliger, J. Methods for the Approximate Solution of Time-Dependent Problems. GARP Publ. series No. 10, Global Atmospheric Research Program (1973).Google Scholar
  46. Laval, P. C. R. Acad. Sci. B, 204, 239–242 (1980).MathSciNetGoogle Scholar
  47. Laval, P. C. R. Acad. Sci. B, 221, 125–128 (1981a).MathSciNetADSGoogle Scholar
  48. Laval, P. Schémas Explicites de Désintégration du Second Ordre pour la Résolution des Problémes Hyperboliques Non Linéaires: Théorie et Applications aux Ecoulements Transsoniques. ONERA, Note Technique No. 1981–10 (1981b).Google Scholar
  49. Lax, P. D. Commun. Pure Appl. Math. 7, 159–193 (1954).MathSciNetMATHCrossRefGoogle Scholar
  50. Lax, P. D. Commun. Pure Appl. Math. 10, 537–566 (1957).MathSciNetMATHCrossRefGoogle Scholar
  51. Lax, P. D., and Wendroff, B. Commun. Pure Appl. Math. 13, 217–237 (1960).MathSciNetMATHCrossRefGoogle Scholar
  52. Lecointe, Y., and Piquet, J. On the Numerical Solution of Some Types of Unsteady Incompressible Viscous Flow. Second International Conference on Numerical Methods in Laminar and Turbulent Flow, July 13–16, 1981, Venice, Italy.Google Scholar
  53. Lerat, A. C. R. Acad. Sci. A 288, 1033–1036 (1979).MathSciNetMATHGoogle Scholar
  54. Lerat, A. Sur le Calcul des Solutions Faibles des Systémes Hyperboliques de Lois de Conservation a l’Aide de Schémas aux Différences. ONERA Publ. No. 1981–1 (1981).Google Scholar
  55. Lerat, A., and Peyret, R. C. R. Acad. Sci. A 276, 759–762 (1973a).MathSciNetMATHGoogle Scholar
  56. Lerat, A., and Peyret, R. C. R. Acad. Sci. A 277, 363–366 (1973b).MathSciNetMATHGoogle Scholar
  57. Lerat, A. and Peyret, R., Comput. Fluids 2, 35–52 (1974a).MathSciNetMATHCrossRefGoogle Scholar
  58. Lerat, A. and Peyret, R. Lecture Notes in Physics, Vol. 35, pp. 251–256, Springer—Verlag, New York (1974b).Google Scholar
  59. Lerat, A., and Peyret, R. Rech. Aerosp. 1975–2, 61–79 (1975).MathSciNetGoogle Scholar
  60. Lerat, A., and Sides, T. Proceedings of the Conference on Numerical Methods in Aerodynamic Fluid Dynamics, Univ. Reading, March (1981).Google Scholar
  61. Lindemuth, J., and Killeen, J. J. Comput Phys. 13, 181–208 (1973).Google Scholar
  62. MacCormack, R. W. The Effect of Viscosity in Hypervelocity Impact Cratering. AIAA paper No. 69–354 (1969).Google Scholar
  63. MacCormack, R. W. In Lecture Notes in Physics, Vol. 8, pp. 151–163, Springer—Verlag, New York (1971).Google Scholar
  64. Magnus, R., and Yoshihara, H. AIAA J. 13, 1622–1628 (1975).ADSCrossRefGoogle Scholar
  65. Mehta, U. B. Dynamic Stall of an Oscillating Airfoil. AGARD Conference Proceedings No. 227, Unsteady Aerodynamics, Ottawa, Canada, pp. 231–2332 (1977).Google Scholar
  66. McGuire, G. R., and Morris, J. L. J. Inst. Math. Applic. 10, 150–165 (1972).MathSciNetMATHCrossRefGoogle Scholar
  67. McGuire, G. R., and Morris, J. L. J. Comput. Phys. 11, 531–549 (1973).MathSciNetADSMATHCrossRefGoogle Scholar
  68. Mitchell, A. R. Computational Methods in Partial Differential Equations. Wiley, New York (1969).MATHGoogle Scholar
  69. Moretti, G. Proceedings of 1974 Heat Transfer and Fluid Mechanics Institute, Stanford Press, Stanford (1974).Google Scholar
  70. Neron, M. Etude et Application d’une Méthode Implicite de Résolution des Équations de Navier—Stokes pur un Fluide Compressible, en Coordonneés Cylindriques. Thése Doct.-Ingénieur, Université Pierre et Marie Curie, Paris (1981).Google Scholar
  71. Oleinik, O. A. Am. Math. Soc. Trans.,Ser. 2, No. 26, pp. 95–172. [Translation of Usp. Math. Nauk 12, 3–73 (1957).]Google Scholar
  72. Orszag, S. A., and Tang, C.-M. J. Fluid Mech. 90, 129–143 (1979).ADSCrossRefGoogle Scholar
  73. Peaceman, D. W., and Rachford, H. H. J. Soc. Indus. Appl. Math. 3, 28–41 (1955).MathSciNetMATHCrossRefGoogle Scholar
  74. Peyret, R. C. R. Acad. Sci. A 272, 1274–1277 (1971).MATHGoogle Scholar
  75. Peyret, R. Résolution Numérique des Systèmes Hyperboliques. Application à la Dynamique des Gaz. ONERA, Publication No. 1977–5 (1977).Google Scholar
  76. Peyret, R. C. R. Acad. Sci. A 286, 59–62 (1978a).MathSciNetADSMATHGoogle Scholar
  77. Peyret, R. A Hermitian Finite-Difference Method for the Solution of the Navier—Stokes Equations. In Proceedings of the First International Conference on Numerical Methods in Laminar and Turbulent Flow, 43–54, Pentech Press, Plymouth, UK (1978b).Google Scholar
  78. Peyret, R. and Viviand, H. Computation of Viscous Compressible Flows Based on the Navier—Stokes Equations. AGARDograph No. 212 (1975).Google Scholar
  79. Raviart, P. A. Méthodes d’ Éléments Finis en Mécanique des Fluides. Ecole d’Eté d’Analyse Numérique, EDF, INRIA, CEA (1979).Google Scholar
  80. Richtmyer, R. D. A Survey of Difference Methods for Non-Steady Gas Dynamics. NCAR, Tech. Note 63–2, Boulder, CO (1962).Google Scholar
  81. Richtmyer, R. D. and Morton, K. W. Difference Methods for Initial Value Problems, Interscience, New York (1967).MATHGoogle Scholar
  82. Roache, P. J. Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, NM (1972).MATHGoogle Scholar
  83. Rubin, E. L., and Burstein, S. Z. J. Comput. Phys. 2, 178–196 (1967).ADSMATHCrossRefGoogle Scholar
  84. Rubin, S. G., and Khosla, P. K. J. Comput. Phys. 24, 217–246 (1977).MathSciNetADSMATHCrossRefGoogle Scholar
  85. Shokin, Y. I., Proc. Steklov Inst. Math. 122, 67–86 (1973).Google Scholar
  86. Shokin, Y. I. In Lecture Notes in Physics, Vol. 59, pp. 410–414, Springer—Verlag, New York (1976).Google Scholar
  87. Steger, J. L. and Warming, R. F. J. Comput. Phys. 40, 263–293 (1981).MathSciNetADSMATHCrossRefGoogle Scholar
  88. Strang, G. SIAM J. Numerical Analysis, 5, 506–517 (1968).MathSciNetADSMATHCrossRefGoogle Scholar
  89. Ta Phuoc Loc, J. Mec. 14, 109–134 (1975).ADSMATHGoogle Scholar
  90. Ta Phuoc Loc, J. Fluid Mech. 100, 111–128 (1980).ADSMATHCrossRefGoogle Scholar
  91. Thommen, H. U., Z. Angew. Math. Phys. 17, 369–384 (1966).MathSciNetMATHCrossRefGoogle Scholar
  92. Varga, R. S. Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ (1962).Google Scholar
  93. Veldman, A. E. P. Comput. Fluids 1, 251–271 (1973).MathSciNetMATHCrossRefGoogle Scholar
  94. Von Neumann, J, and Richtmyer, R. D. J. Appl. Phys. 21, 232–257 (1950).MathSciNetADSMATHCrossRefGoogle Scholar
  95. Warming, R. F., and Beam, R. M. SIAM-AMS Proc. 11, 85–129 (1978).MathSciNetGoogle Scholar
  96. Warming, R. F., and Hyett, B. J. J. Comput. Phys. 14, 159–179 (1974).MathSciNetADSMATHCrossRefGoogle Scholar
  97. Warming, R. F., Kutler, P., and Lomax, H. AIAA J. 11, 189–196 (1973).MathSciNetADSMATHCrossRefGoogle Scholar
  98. Yanenko, N. N. The Method of Fractional Steps,Springer—Verlag, New York (1971). [In French, Méthodes à Pas Fractionnaires,Armand Colin, Paris (1968).]Google Scholar
  99. Yanenko, N. N., and Shokin, Y. I. Phys. Fluids 12, Suppl. I.., I1. 28–11. 33 (1969).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  • Roger Peyret
    • 1
  • Thomas D. Taylor
    • 2
  1. 1.CNRS, Département de MathématiquesUniversité de NiceNiceFrance
  2. 2.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA

Personalised recommendations