Skip to main content

Inviscid Compressible Flows

  • Chapter

Part of the book series: Springer Series in Computational Physics ((SCIENTCOMP))

Abstract

In the area of inviscid compressible flows there are a variety of practical problems that arise in everyday engineering applications. These include rocket nozzle flows, aircraft and missile engine inlet flows, reentry vehicle and rocket aerodynamics, blast fields generated by different types of energy release, and aircraft flow fields. One can, of course, continue the list, but these serve as examples whose discussion will adequately display the techniques for solving compressible-flow problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbett, M. J. Proceedings of the AIAA Computational Fluid Dynamics Conference, pp. 153–172, Palm Springs, July (1973).

    Google Scholar 

  • Babenko, K. I., Voskresenskii, G. P., Lyubimov, A. N., and Rusanov, V. V. Three-Dimensional Flow of Ideal Gases Around Smooth Bodies. NASA TTF-380 (1968). [Original published by Nauka Moscow (1964)].

    Google Scholar 

  • Ballhaus, W. F., and Bailey, F. R. AIAA Paper 7–677, July (1972).

    Google Scholar 

  • Ballhaus, W. F. Recent Progress in Transonic Flow Calculations. In: Numerical Methods in Fluid Dynamics, H. J. Wirz and J. J. Smolderen, Eds., pp. 155–236, Hemisphere Publishing, Washington, D. C. (1978).

    Google Scholar 

  • Barnwell, R. AIAA Paper 71–56, January (1971).

    Google Scholar 

  • Bauer, F., Garabedian, P., Korn, D., and Jameson, A. Supercritical Wing Sections II, Springer-Verlag, New York (1975).

    Book  MATH  Google Scholar 

  • Bohachevsky, I. O., and Rubin, E. L. AIAA J. 4, 600–607 (1966).

    Article  MATH  Google Scholar 

  • Boppe, C. W., and Stern, M. A. AIAA Paper 80–0130, January (1980).

    Google Scholar 

  • Boppe, C. W., and Aidala, P. V. Complex Configuration Analysis at Transonic Speeds. AGARD Conference on Subsonic/Transonic Configuration Aerodynamics, Preprint No. 285, May (1980).

    Google Scholar 

  • Bristeau, M. O. Application of Optimal Control Theory to Transonic Flow Computations. In Proceedings of the 3rd IRIA Symposium on Computational Methods in Applied Science and Engineering, Versailles, France, December (1977).

    Google Scholar 

  • Bristeau, M. O., et al. Application of Optimal Control and Finite Element Methods to the Calculation of Transonic and Incompressible Flow. IRIA Rept. No. 294, LeChesnay, France, April (1978).

    Google Scholar 

  • Caughey, D. A., and Jameson, A. Transonic Flow Problems in Turbomachinery, T. C. Adamson and M. Platier, Eds., pp. 274–291, Hemisphere Publishing, Washington, D. C. (1977a).

    Google Scholar 

  • Caughey, D. A. and Jameson, A. AIAA J. 15, 1474–1480 (1977b).

    Article  ADS  MATH  Google Scholar 

  • Caughey, D. A. Lecture Notes, University of Tennessee Space Institute, Tullahoma, TN, December (1978).

    Google Scholar 

  • Caughey, D. A., and Jameson, A. AIM J. 17, 175–181 (1979a).

    MATH  Google Scholar 

  • Caughey, D. A., and Jameson, A. AIAA Paper No. 79–1513 (1979b).

    Google Scholar 

  • Caughey, D. A. A.: “A (Limited) Perspective on Computational Aerodynamics.” Presented at the 13th AIAA Fluid and Plasma Dynamics Conference, July (1980); also Cornell University Rept. FDA-80–07, July (1980).

    Google Scholar 

  • Caughey, D. A. “A Review of Transonic Flow Computation,” Ann. Rev. Fluid Mech. 14, 261–283 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  • Chan, S. T. K., Brashears, M. R., and Young, V. Y. C. AIAA Paper 75–79, Pasadena, (1975).

    Google Scholar 

  • Chang, I. S. AIAA Paper 80–0272, Pasadena, (1980).

    Google Scholar 

  • Chen, L. T., and Caughey, D. A. J. Aircraft 17, 167–174 (1980).

    Article  Google Scholar 

  • Chattot, J. J., and Coulombeix, C. Calculs D’Ecoulements Transsoniques Autour D’Ailes. ONERA Rept. T. P. No. 1978–125 Chatillon, France (1978).

    Google Scholar 

  • Chorin, A. J. J. Comput Phys. 22, 517–533 (1976).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chorin, A. J. J. Comput Phys. 25, 253–272 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Colella, P. The Effects of Sampling and Operator Splitting on the Accuracy of Glimm’s Scheme. PhD Thesis, University of California, Berkeley (1978).

    Google Scholar 

  • Euvrard, D., and Tournemine, G. J. Méc. 12, 419–461 (1973).

    MathSciNet  MATH  Google Scholar 

  • Fletcher, C. A. J. Subsonic Inviscid Flow by the Finite-Element Method. Dept. of Defense, Weapons Research Establishment Rept. WRE-TR-1858 (W), Salisbury, S. Australia, August (1977).

    Google Scholar 

  • Fletcher, C. A. J. J. Comput. Phys. 33, 301–312 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Glaz, H. M. Development of Random Choice Numerical Methods for Blast Wave Problems. NSWC Report/WOL TR 78–211, March (1979).

    Google Scholar 

  • Glaz, H. M., and Colella, P. Private communication results can be obtained from P. Colella at LLL, Livermore, CA (1980).

    Google Scholar 

  • Godunov, S. K. Mat. Sb. 47, 271–306 (1959).

    MathSciNet  Google Scholar 

  • Grossman, R., and Moretti, G. AIAA Paper 70–1322 (1970).

    Google Scholar 

  • Holden, M. Studies of Transitional Flows, Unsteady Separation Phenomena, and Partial Induced Augmentation Heating on Ablated Noise Tips. AFOIL Rept TR-76–1066, October (1975).

    Google Scholar 

  • Holt, M., and Masson, B. S. Lecture Notes in Physics, Vol. 8, pp. 207–214. Springer-Verlag, New York (1971).

    Google Scholar 

  • Holt, M. Numerical Methods in Fluid Dynamics, Springer-Verlag, New York (1977).

    MATH  Google Scholar 

  • Jameson, A. Commun. Pure Appl. Math. 27, 283–309 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  • Jameson, A. In: Proceedings of the 2nd AIM Computational Fluid Dynamics Conference, pp. 148–161, Hartford, CT, June (1975).

    Google Scholar 

  • Jameson, A., and Caughey, D. A.: In: Proceedings of the 3rd AIAA Computational Fluid Dynamics Conference, p. 35–54, Albuquerque, N.M., June (1977c).

    Google Scholar 

  • Jameson, A. In: Proceedings of the 4th AIM Computational Fluid Dynamics Conference, pp. 122–146, Williamsburg, VA, July (1979).

    Google Scholar 

  • Kentzer, C. P. Lecture Notes in Physics, Vol. 8, pp. 108–113, Springer-Verlag, New York (1971).

    Google Scholar 

  • Kershaw, D. C. J. Comput. Phys. 26, 43–65 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Khosla, P. K., and Rubin, S. G. Comput. Fluids, 1, 109–121 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  • Kutler, P., and Lomax, H. J. Spacecraft Rockets 8, 1175–1182 (1971).

    Article  ADS  Google Scholar 

  • Kutler, P., Lomax, H., and Warming, R. F. AIAA J. 11, 196–204 (1973).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kutler, P., Reinhardt, W., and Warming, R. F. AIM J. 11, 657–664 (1973).

    MATH  Google Scholar 

  • Kutler, P. AIM J. 12, 557–578 (1974).

    Google Scholar 

  • Kutler, P., and Sakell, L. AIAA Paper 75–49, January (1975).

    Google Scholar 

  • Kutler, P., Chakravarthy, S. R., and Lombard, C. K. AIAA Paper 78–213 (1978).

    Google Scholar 

  • Lax, P. D. Commun. Pure Appl. Math. 7, 159–193 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  • Lax, P. D., and Wendroff, B. Commun. Pure Appl. Math. 13, 217–237 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  • Lax, P. D., and Wendroff, B. Commun. Pure Appl. Math. 17, 381–398 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  • Lerat, A., and Sides, J. In: Proceedings of the Conference on Numerical Methods in Aeronautical Fluid Dynamics, University of Reading, March 29-April 1 (1981).

    Google Scholar 

  • Lomax, H. and Steger, J. L. Ann. Rev. Fluid Mech. 7, 63–80 (1975).

    Article  ADS  Google Scholar 

  • Magnus, R., and Yoshihara, H. AIAA J. 8, 2157–2162 (1970).

    Article  ADS  Google Scholar 

  • Magnus, R., and Yoshihara, H. AIM J. 13, 1622–1628 (1975).

    Google Scholar 

  • Magnus, R. J. Some Numerical Solutions of Inviscid, Unsteady, Transonic Flows over the NLR 7301 Airfoil. Convair General Dynamics Rept. CASD/LVP 78–013, January (1978).

    Google Scholar 

  • Marconi, F., and Koch, F. An Improved Supersonic 3-D External Inviscid Flow Field Code. NASA Contractor Rept. 3108, Grumman Aerospace, Bethpage, NY (1979).

    Google Scholar 

  • Masson, B. S., Taylor, T. D., and Foster, R. M. AIAA J. 7, 694–698 (1969).

    Article  ADS  MATH  Google Scholar 

  • Masson, B. S., and Taylor, T. D. Polish Fluid Dyn. Trans. 5, 185–194 (1971).

    Google Scholar 

  • Masson, B. S., and Friedman, G. Axisymmetric Transonic Flow Calculations. Picatinny Arsenal Tech. Rept. No. 4271, Dover, NJ (1972).

    Google Scholar 

  • MacCormack, R. W. AIAA Paper 69–354, May (1969).

    Google Scholar 

  • Moretti, G. In: Proceedings of the 1974 Heat Transfer and Fluid Mechanics Institute, pp. 184–201, Stanford University Press, Stanford (1974).

    Google Scholar 

  • Moretti, G. Computation of Shock Layers about Ablated Blunt Nosed Bodies. Polytechnic Institute of New York Rept. 77–14, August (1977).

    Google Scholar 

  • Moretti, G. An Old Integration Scheme Refurbished and put to Work. Polytechnic Institute of New York Rept. M/AE 78–22, September (1978).

    Google Scholar 

  • Moretti, G. Comput. Fluids 7, 191–205 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  • Moretti, G. A Numerical Analysis of Muzzle Blast-Precursor Flow. Polytechnic Institute of New York Rept. M/AE 80–10, May (1980).

    Google Scholar 

  • Muroran, E. M., and Cole, J. D. AIM J. 9, 114–121 (1971).

    Google Scholar 

  • Periaux, J. Int. J. Numer. Meth. Eng. 9, 775–831 (1975).

    Article  MATH  Google Scholar 

  • Rakich, J. V., and Kutler, P. AIAA Paper 72–191, January (1972).

    Google Scholar 

  • Reddall, W. Private communication of result (1980).

    Google Scholar 

  • Richtmyer, R. D., and Morton, K. W. Difference Methods of Initial-Value Problems, 2nd ed., Interscience, New York (1967).

    Google Scholar 

  • Rusanov, V. V. USSR. Comput. Math. Math. Phys. 8, 156–179 (1968).

    Article  Google Scholar 

  • Rusanov, V. V. J. Comput. Phys. 5, 507–516 (1970).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schmidt, W. Progress in Transonic Flow Computations; Analysis and Design Methods for 3-D Flows. In: Numerical Methods in Fluid Dynamics, H. J. Wirz and J. J. Smolderen, Eds., pp. 299–338, Hemisphere Publishing, Washington, D. C. (1978).

    Google Scholar 

  • Schmidt, E. M., and Shear, D. D., The Flow Field About the Muzzle of an M-16 Rifle, BRL Report No. 1692, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Md., January (1974).

    Google Scholar 

  • Sod, G. A. J. Comput. Phys. 27, 1–31 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sod, G. A. Computational Fluid Dynamics with Stochastic Techniques. Princeton University Technical Rept. MAE 1479, March (1980a).

    Google Scholar 

  • Sod, G. A. Automotive Engine Modeling with a Random Choice Hybrid Method, II. SAE Technical Paper 800288, February (1980b).

    Google Scholar 

  • South, Jr., J. C., and Jameson, A. In: Proceedings of the AIM Computational Fluid Dynamics Conference, pp. 8–12, July, AIAA, New York (1973).

    Google Scholar 

  • Taylor, T. D., and Masson, B. S. J. Comput. Phys. 5, 443–454 (1970).

    Article  ADS  MATH  Google Scholar 

  • Taylor, T. D. AGAR Dograph, No. 187, (1974).

    Google Scholar 

  • Taylor, T. D., and Lin, T. C. AIM J. 19, 346–349 (1981).

    Google Scholar 

  • Thomas, P. D., Vinokur, M. Bastianon, R. A., and Conti, R. J. AIM J. 10, 887–894 (1972).

    MATH  Google Scholar 

  • Thommen, H. U. Z. Angew. Math. Phys. 17, 369–384 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  • Thommen, H. U., and D’Attorre, L. AIAA Paper 65–25, January (1965).

    Google Scholar 

  • Thompson, J. F., Thames, F. C., and Martin, C. W. J. Comput. Phys. 15, 299–313 (1974).

    Article  ADS  MATH  Google Scholar 

  • VanLeer, B. J. Comput. Phys. 32, 101–136 (1979).

    Article  ADS  Google Scholar 

  • Viviand, H., and Veuillot, J. P. Pseudo-Unstationary Methods for Calculation of Transonic Flows (in French). ONERA Publication No. 1978–4, Chatillon, France (1978).

    Google Scholar 

  • Walkden, F., Caine, P. and Laws, G. T. J. Comput. Phys. 27, 103–122 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Peyret, R., Taylor, T.D. (1983). Inviscid Compressible Flows. In: Computational Methods for Fluid Flow. Springer Series in Computational Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85952-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85952-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13851-8

  • Online ISBN: 978-3-642-85952-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics