Comparison of Finite-Difference, Finite-Element, and Spectral Methods

  • C. A. J. Fletcher
Part of the Springer Series in Computational Physics book series (SCIENTCOMP)


In the preceding chapters we have examined the structure and properties of the traditional Galerkin method and observed that its modern developments have gone in two radically different directions. First, finite-element methods use local, low-order polynomial trial functions to generate sparse algebraic equations in terms of meaningful nodal unknowns. Secondly the use of global, orthogonal trial functions permits spectral methods to achieve a high accuracy per degree of freedom.


Spectral Method Trial Solution Galerkin Formulation Galerkin Spectral Method Local Analytic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, Y. J. Comp. Phys. 24, 10–22 (1977).MathSciNetADSMATHCrossRefGoogle Scholar
  2. Baker, A. J., and Soliman, M. O. J. Comp. Phys. 32, 289–324 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  3. Culham, W. E., and Varga, R. S. Soc. Pet. Eng. J. 11, 374–388 (1971).Google Scholar
  4. Deconinck, H., and Hirsch, C. Lecture Notes in Physics, Vol. 141, pp. 138–143, Springer-Verlag, Berlin (1981).Google Scholar
  5. Fix, G. J. SIAM J. App. Math. 29, 371–387 (1975).MathSciNetMATHCrossRefGoogle Scholar
  6. Fletcher, C. A. J. “A Comparison of the Finite Element and Finite Difference Methods for Computational Fluid Dynamics”, in Finite Element Flow Analysis (ed. T. Kawai ), pp. 1003–1010, Univ. of Tokyo Press (1982).Google Scholar
  7. Fletcher, C. A. J., and Fleet, R. W. “A Dorodnitsyn Finite Element Boundary Layer Formula- tion”, 8th International Conference on Numerical Methods in Fluid Dynamics, Aachen, 1982.Google Scholar
  8. Fletcher, C. A. J., and Holt, M. J. Comp. Phys. 18, 154–164 (1975).ADSMATHCrossRefGoogle Scholar
  9. Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ (1971).MATHGoogle Scholar
  10. Gottlieb, D., and Orszag, S. A. Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia (1977).CrossRefGoogle Scholar
  11. Gresho, P. M., Lee, R. L., and Sani, R. L. In Finite Elements in Fluids, Vol. 3, pp. 335–350, Wiley, London (1978).Google Scholar
  12. Haidvogel, D. B., Robinson, A. R., and Schulman, E. E. J. Comp. Phys. 34, 1–53 (1980).MathSciNetADSCrossRefGoogle Scholar
  13. Hopkins, T. R., and Wait, R. Int. J. Num. Meth. Eng. 12, 1081–1107 (1978).MathSciNetMATHCrossRefGoogle Scholar
  14. Jameson, A. In Numerical Methods in Fluid Dynamics (eds. H. J. Wirz and J. J. Smolderen ), pp. 1–87, Hemisphere, Washington (1978).Google Scholar
  15. Jespersen, D. C. J. Comp. Phys. 16, 383–390 (1974).MathSciNetADSMATHCrossRefGoogle Scholar
  16. Kreiss, H. O. Lecture Notes in Mathematics, Vol. 363. pp. 64–74, Springer-Verlag, Berlin (1973).Google Scholar
  17. Majda, A., Donoghue, J., and Osher, S. Math. Comp. 32, 1041–1081 (1978).MathSciNetMATHCrossRefGoogle Scholar
  18. McCrory, R. L., and Orszag, S. A. J. Comp. Phys. 37, 93–112 (1980).MathSciNetADSMATHCrossRefGoogle Scholar
  19. Morchoisne, Y. La Recherche Aerospatiale 5, 11–31 (1979).MathSciNetGoogle Scholar
  20. Morton, K. W. In The State of the Art in Numerical Analysis (ed. D. Jacobs), pp. 699–756, Academic Press, London (1977).Google Scholar
  21. Orszag, S. A. J. Fluid Mech. 49, 75–112 (1971).MathSciNetADSMATHCrossRefGoogle Scholar
  22. Orszag, S. A. J. Comp. Phys. 37, 70–92 (1980).MathSciNetADSMATHCrossRefGoogle Scholar
  23. Orszag, S. A., and Israeli, M. Ann. Rev. Fluid Mech. 6, 281–318 (1974).ADSCrossRefGoogle Scholar
  24. Patterson, G. S. Ann. Rev. Fluid Mech. 10, 289–300 (1978).MathSciNetADSCrossRefGoogle Scholar
  25. Pinder, G. F., and Gray, W. G. Finite Element Simulation in Surface and Subsurface Hydrology, Academic Press, New York (1977).Google Scholar
  26. Popinski, Z., and Baker, A. J. J. Comp. Phys. 21, 55–84 (1976).MathSciNetADSMATHCrossRefGoogle Scholar
  27. Soliman, M. O., and Baker, A. J. Comp. Fluids 9, 43–62 (1981a).MathSciNetADSMATHCrossRefGoogle Scholar
  28. Soliman, M. O., and Baker, A. J. Comp. Meth. App. Mech. Eng. 28, 81–102 (1981b).MathSciNetMATHCrossRefGoogle Scholar
  29. Swartz, B. In Mathematical Aspects of Finite Elements in Partial Differential Equations (ed. C. de Boor ), pp. 279–312 Academic Press, New York (1974).Google Scholar
  30. Swartz, B., and Wendroff, B. SIAM J. Num. Anal. 11, 979–993 (1974).MathSciNetADSMATHCrossRefGoogle Scholar
  31. Thompson, J. F., Thames, F. C. and Mastin, C. W. J. Comp. Phys. 15, 299–319 (1974).ADSMATHCrossRefGoogle Scholar
  32. Wigton, L. B., and Holt, M. Viscous—Inviscid Interaction in Transonic Flow, AIAA 5th Computational Fluid Dynamics Conference, Palo Alto, paper 81–1003 (1981).Google Scholar
  33. Zienkiewicz, O. C. The Finite Element Method, 3rd Ed., McGraw-Hill, London (1977).MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • C. A. J. Fletcher
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of SydneyAustralia

Personalised recommendations