Advertisement

Insectivora Cytogenetics

  • D. S. Borgaonkar

Abstract

Cytogenetic analyses among the Insectivora Bowdich are available for seven families and a total of 61 species have been investigated. Painter (1925) was the first to report on chromosome counts for any Insectivore and Makino’s (1951) list of chromosome numbers in animals gave information on only 8 species comprising altogether 10 reports. However, during the last decade, a number of investigators have concerned themselves with systematic studies of certain groups of Insectivores and these can be expected to contribute to a more adequate understanding of speciation and evolution in the insectivores. Cytogenetic analyses of “species hybrids” per se are not available, although a little information is available on the reproductive mechanisms of these animals. However, recently from studies on their physiology, breeding behavior, and ecology, information necessary for maintaining the animals in captivity has been made available.

Keywords

Chromosome Number Chromosome Pair Centric Fusion Tree Shrew Common Shrew 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrighi, F. E.: Personal communication, 1968.Google Scholar
  2. Benirschke, K.: Sterility and fertility of interspecific mammalian hybrids. In: Comparative Aspects of Reproductive Failure. K. Benirschke, ed. New York: Springer-Verlag Inc., 218, 1966.Google Scholar
  3. Borgaonkar, D. S. and E. Gould: Chromosome complement of Tenrecs, Centetes ecaudatus (Order Insectivora, Class Mammalia). Experientia 21:631, 1965.PubMedCrossRefGoogle Scholar
  4. Borgaonkar, D. S. and E. Gould: Homozygous reciprocal translocation as a mode of speciation in Microgale Thomas 1883 (Tenrecidae Insectivora). Experientia 24:506, 1968.PubMedCrossRefGoogle Scholar
  5. Bovey, R.: Un type nouveau d’heterochromosomes chez un Mammifère: le trivalent sexuel de Sorex araneus. Arch. Jul. Kl-St. Vere. 23:506, 1948.Google Scholar
  6. Bovey, R.: La formule chromosomique de quelques Insectivores indigenes. Experientia 5:72, 1949.PubMedCrossRefGoogle Scholar
  7. Bovey, R.: Les chromosomes des chiroptères et des Insectivores. Rev. Suisse Zool. 56:371, 1949.Google Scholar
  8. Brenner, S.: The chromosome complement of Elephantulus. So. Afri. J. Med. Sci. (Biol. Suppl.) 11:71, 1946.Google Scholar
  9. Chu, E. H. Y. and M. A. Bender: Cytogenetics and evolution of primates. Ann. N.Y. Acad. Sci. 102:253, 1962.PubMedCrossRefGoogle Scholar
  10. Dodson, E. D., cited by M. A. Bender and C. H. Y. Chu. The chromosomes of primates. In: Evolutionary and Genetic Biology of Primates. 1:261, 1963.Google Scholar
  11. Egozcue, J., B. Chiarelli, M. Sarti-Chiarelli and F. Hagemenas: Chromosome polymorphism in the tree shrew (Tupaia glis). Folia Primat. 8:150, 1968.CrossRefGoogle Scholar
  12. Eisenberg, J. F. and E. Gould: The behavior of Solenodon paradoxus in captivity with comments on the behavior of other Insectivora. Zoologica 51:49, 1966.Google Scholar
  13. Ellerman, J. R., T. C. S. Morrison-Scott and R. W. Hayman: Southern African mammals 1758 to 1951; a reclassification. London: Brit. Mus. Nat. Hist.Google Scholar
  14. Elliot, O. S., M. Wong and D. S. Borgaonkar: Karyological study of Tupaia from Thailand. In manuscript.Google Scholar
  15. Elliot, O. S., M. Wong and H. Lisco: Personal communication, 1968.Google Scholar
  16. Ford, C. E. and J. L. Hamerton: Chromosomes of five rodent species. Nature 177:140, 1956.PubMedCrossRefGoogle Scholar
  17. Ford, C. E., J. L. Hamerton and G. B. Sharman: Chromosome polymorphism in the common shrew. Nature 180:392, 1957.PubMedCrossRefGoogle Scholar
  18. Geisler, M. and A. Gropp: Chromosome polymorphism in the European hedgehog Erinaceus europaeus (Insectivora). Nature 214:396, 1967.PubMedCrossRefGoogle Scholar
  19. Gould, E. and J. F. Eisenberg: Notes on the biology of the Tenrecidae. J. Mammal. 47:660, 1966.CrossRefGoogle Scholar
  20. Grandidier, G.: Un nouveau type de Mammifère insectivore de Madagascar. Bull. Acad. Malgache N.S. 11:85, 1928.Google Scholar
  21. Grandidier, G. and G. Petit: Etude d’un Mammifère Insectivore Malgache le Geogale aurita A.M.E. et A.G. Faune des Colonies Fran. 4:441, 1930.Google Scholar
  22. Grandidier, G. and G. Petit: Un type nouveau de Centetidae Malgache (Paramicrogale occidentalis). Bull. Soc. Zool. France 56:126, 1931.Google Scholar
  23. Gropp, A., M. Geisler and P. Citoler: The chromosomes of the hedgehog (Erinaceus europ.) and the mole (Talpa europ). Mamm. Chr. Newsletter 22: 181, 1966.Google Scholar
  24. Gropp, A., M. Geisler and P. Citoler: These proceedings.Google Scholar
  25. Halkka, O. and U. Skaren: Evolution chromosomique chez genre Sorex: nouvelle information. Experientia 20:314, 1964.PubMedCrossRefGoogle Scholar
  26. Herter, K.: Die Biologie der Europäischen Igel. Monograph. Leipzig, 1938.Google Scholar
  27. Hsu, T. C. and M. L. Johnson: Karyotypes of two mammals from Malaya. Amer. Naturalist 97:127, 1963.CrossRefGoogle Scholar
  28. Jordon, M.: Formules chromosomiques de quelques Insectivores de Bialowieza. I. Erinaceus roumanicus. Folia Biologica (Krakow) 8:151, 1966.Google Scholar
  29. Kang, Y. S. and Y. J. Kim: Studies on chromosomes of the Korean mammals. I. Karyotypes of squirrel and others. Zoologica (Seoul) 2:1, 1963.Google Scholar
  30. Klinger, H. P.: The somatic chromosomes of some primates (Tupaia glis, Nyctice-bus coucang, Tarsius bancanus, Cercocebus aterrimus, Symphalangus syndac-tylus). Cytogenetics 2:140, 1963.CrossRefGoogle Scholar
  31. Koller, P. C.: Chromosome behaviour in the male ferret and mole during anoestrus. Proc. Roy. Soc. Lond. Ser. B. 121:192, 1936.CrossRefGoogle Scholar
  32. Kral, B.: Karyological analysis of two European species of the genus Erinaceus. Zool. Listy 16:239, 1967.Google Scholar
  33. Lyon, M. W. Jr.: Tree shrews: An account of the family Tupaiidae. Proc. U.S. Nat. Mus. 45:1, 1913.CrossRefGoogle Scholar
  34. Makino, S.: An Atlas of the Chromosome Numbers in Animals. Ames, Iowa: The Iowa State College Press, 1951.Google Scholar
  35. Matthey, R. and A. Meylan: Le polymorphisme chromosomique de Sorex araneus L. Etude de deux portées de 5 et 9 petits. Rev. Suisse Zool. 68:223, 1961.Google Scholar
  36. Matthey, R. and A. Meylan: Le polymorphisme chromosomique des Mus africains du sous-genre Leggada. Revision generale portant sur l’analyse de 213 individus. Rev. Suisse Zool. 73:585, 1966.Google Scholar
  37. Matthey, R. and A. Meylan: Les chromosomes des Macroscelides rozeti Duvernoy (Mammalia-Insec-tivora). Existet-il une serie polyploide chez les Macroscelidae? Rev. Suisse Zool. 61:669, 1954.Google Scholar
  38. Mayr. F.: These proceedings.Google Scholar
  39. Meylan, A.: Contribution a l’étude du polymorphisme chromosomique chez Sorex araneus L. Rev. Suisse Zool. 67:258, 1960.Google Scholar
  40. Meylan, A.: Le polymorphisme chromosomique de Sorex araneus L. Rev. Suisse Zool. 71:903, 1964.PubMedGoogle Scholar
  41. Meylan, A.: Le formule chromosomique de Sorex minutus L. Experientia 21:268, 1965.PubMedCrossRefGoogle Scholar
  42. Meylan, A.: Repartition geographique des races chromosomiques de Sorex araneus L. en Europe (Mamm.-Insectivora). Rev. Suisse Zool. 72:636, 1965.Google Scholar
  43. Meylan, A.: Données nouveues sur les chromosomes des Insectivores européens (Mamm.). Rev. Suisse Zool. 73:548, 1966.Google Scholar
  44. Meylan, A.: Formules chromosomiques et polymorphisme Robertsonien chez Blarina brevicauda (Say) (Mammalia-Insectivora). Canad. J. Zool. 45:1119, 1967.CrossRefGoogle Scholar
  45. Meylan, A.: La formule chromosomique de Crocidura occidentalis kivu Osgood (Mammalia-Insectivora). Rev. Suisse Zool. 74:685, 1967.PubMedGoogle Scholar
  46. Meylan, A.: In: Chromosome Numbers of Eutherian Mammals. 6th supplement. R. Matthey, ed. January 6, 1968. Mamm. Chr. Newsletter 9:72, 1968.Google Scholar
  47. Painter, T. S.: A comparative study of the chromosomes of Mammals. Amer. Naturalist 59:385, 1925.CrossRefGoogle Scholar
  48. Painter, T. S.: Chromosome numbers in mammals. Science 61:423, 1925.PubMedCrossRefGoogle Scholar
  49. Raychaudhari, S. P., P. V. Ranjini and T. Sharma: Karyological studies of 16 species of Indian mammals. M.C.N. 9:82, 1968.Google Scholar
  50. Sharman, G. B.: Chromosomes of the common shrew. Nature 177:941, 1956.PubMedCrossRefGoogle Scholar
  51. Siivonen, L.: Sorex isodon Turov (1924) and 5. unguiculatus Dobson (1890) as independent shrew species. Aquilo Ser. Zool. 4:1, 1965.Google Scholar
  52. Simpson, G. G.: The principles of classification and a classification of mammals. Bull. Amer. Mus. Nat. Hist. 85:1, 1945.Google Scholar
  53. Skaren, U. and O. Halkka: The karyotype of Sorex caecutiens Laxmann. Hereditas 54:376, 1966.PubMedCrossRefGoogle Scholar
  54. Takagi, N. and Y. Fujimaki: Chromosomes of Sorex shinto saevus Thomas and Sorex unguiculatus Dobson. Jap. J. Genet. 41:109, 1966.CrossRefGoogle Scholar
  55. Tateishi, S.: On the chromosomes of the two species of Insectivora. A preliminary note. Jap. J. Genet. 13:211, 1937.: The chromosomes of two species of Insectivora. Annot. Zool. Jap. 17: 515, 1938.Google Scholar
  56. Thomas, O.: On the arrangement of the small Tenrecidae hitherto referred to Oryzorictes and Microgale. Ann-Mag. Nat. Hist. 1 (Ser. 9): 302, 1918.CrossRefGoogle Scholar
  57. Van Valen, L.: Treeshrews, primates, and fossils. Evolution 19:137, 1965.CrossRefGoogle Scholar
  58. White, M. J. D.: Animal Cytology and Evolution, 2nd ed. Cambridge: Univcr sity Press, 1954.Google Scholar
  59. White, M. J. D.: Models of Speciation. Science 159:1065, 1968.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1969

Authors and Affiliations

  • D. S. Borgaonkar
    • 1
  1. 1.Division of Medical Genetics, Department of MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations