Blood-Brain Barrier Permeability to Micromolecules After Focal Cerebral Ischemia

  • S. Sampaolo
  • N. Heye
  • J. Cervos-Navarro
Conference paper


During the initial 1–6 h of ischemia the blood-brain barrier (BBB) is grossly impermeable to protein tracers such as Evans blue (EB) [9–11, 19]. Tissue water content in ischemic brain increases within the first 2 h of arterial occlusion [8–10, 19, 21] and a significant decrease of the specific gravity of the ischemic frontal cortex has been reported as early as 30 min after permanent middle cerebral artery (MCA) occlusion in the rat [22]. Fluid accumulation is believed to occur in response to an increase of sodium into the lesion site [27] or reduction in sodium clearance from the tissue [12].


Methylene Blue Focal Cerebral Ischemia Evans Blue Piriform Cortex Sodium Fluorescein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albanese V, Tommasino C, Spadaro A, Tomasello F (1980) A transbasisphenoidal approach for selective occlusion of the middle cerebral artery in rats. Experientia 36:1302–1304PubMedCrossRefGoogle Scholar
  2. 2.
    Bouldin TW, Krigman MR (1975) Differential permeability of cerebral capillary and choroid plexus to lanthanum ions. Brain Res 241:57–65Google Scholar
  3. 3.
    Crockard A, Iannotti F, Hunstock AT, Smith RD, Harris RJ, Symon L (1980) Cerebral blood flow and edema following carotid occlusion in the gerbil. Stroke 11:494–498PubMedCrossRefGoogle Scholar
  4. 4.
    Crone C (1984) Lack of selectivity to small ions in paracellular pathways in cerebral and muscle capillaries of the frog. J Physiol 353:317–337PubMedGoogle Scholar
  5. 5.
    Hayashi N, Tsubokawa T, Kimura S, Makiyama Y, Toeda M (1985) Simultaneous topographic analysis of brain edema, parenchymal energy metabolism (NAD/NADH redox state, reduced cytochrome aa3, ATP) and intracellular calcium during cerebral ischemia. In: Inaba Y, Klatzo I, Spatz M (eds) Brain edema. Springer, Berlin, pp 258–262CrossRefGoogle Scholar
  6. 6.
    Herman IM, Pollard TD, Weng AJ (1982) Contractile proteins in endothelial cells. Ann NY Acad Sci 401:50–60PubMedCrossRefGoogle Scholar
  7. 7.
    Iannotti F, Hoff JT (1983) Ischemic brain edema with and without reperfusion: an experimental study in gerbils. Stroke 14:562–567PubMedCrossRefGoogle Scholar
  8. 8.
    Inao S, Kuchiwaki H, Hirai N (1985) Dynamics of tissue water content free and bound components, associated with ischemic brain edema. In: Inaba I, Klatzo I, Spatz M (eds) Brain edema. Springer, Berlin, pp 360–366CrossRefGoogle Scholar
  9. 9.
    Ito U, Ohno K, Nakamura R, Suganuma F, Inaba Y (1979) Brain edema during ischemia and after restoration of blood flow. Stroke 10:542–547PubMedCrossRefGoogle Scholar
  10. 10.
    Kamijyo Y, Garcia JH, Cooper J (1977) Temporary regional cerebral ischemia in the cat. A model of hemorrhagic and subcortical infarction. J Neuropathol Exp Neurol 36:338–350PubMedCrossRefGoogle Scholar
  11. 11.
    Laursen H, Suzuki R, Kuroiwa T, Fenton I, Klatzo I (1983) Changes of cerebrovascular permeability in middle cerebral artery occlusion. In: Stefanovich V (ed) Stroke animal models. Pergamon, Oxford (Advances in the Biosciences 43:13–25)Google Scholar
  12. 12.
    Lo WD, Betz AL, Schielke GP, Hoff JT (1987) Transport of sodium from blood to brain in ischemic brain edema. Stroke 18:150–157PubMedCrossRefGoogle Scholar
  13. 13.
    Nagy Z, Göhlert MG, Wolfe LS, Hüttner I (1985) Ca2+ depletion induced disconnection of tight junctions in isolated rat brain microvessels. Acta Neuropathol 68:48–52PubMedCrossRefGoogle Scholar
  14. 14.
    Nagy Z, Mathieson G, Hüttner I (1979) Blood brain barrier opening to horseradish peroxidase in acute arterial hypertension. Acta Neuropathol 48:45–53PubMedCrossRefGoogle Scholar
  15. 15.
    Nagy Z, Mathieson G, Hüttner I (1979) Opening of tight junctions in cerebral endothelium II: effect of pressure pulse induced acute arterial hypertension. J Comp Neurol 185:579–585PubMedCrossRefGoogle Scholar
  16. 16.
    Nagy Z, Pappius HM, Mathieson G, Hüttner I (1979) Opening of tight junctions in cerebral endothelium I: effect of hyperosmolar mannitol infused through the internal carotid artery. J Comp Neurol 185:569–578PubMedCrossRefGoogle Scholar
  17. 17.
    Nagy Z, Peters H, Hüttner I (1983) Charge related alterations of the cerebral endothelium. Lab Invest 49:662–671PubMedGoogle Scholar
  18. 18.
    Nakagawa Y, Cervos-Navarro J, Artigas J (1985) Tracer study on a paracellular route in experimental hydrocephalus. Acta Neuropathol 65:247–254PubMedCrossRefGoogle Scholar
  19. 19.
    Olsson Y, Crowell RM, Klatzo I (1971) The blood brain barrier to protein tracers in focal cerebral ischemia and infarction caused by occlusion of the middle cerebral artery. Acta Neuropathol 18:89–102PubMedCrossRefGoogle Scholar
  20. 20.
    Paxinos G, Watson C (1986) The rat brain, 2nd edn. Academic, SydneyGoogle Scholar
  21. 21.
    Sadoshima S, Fujishima M, Ogata J, Ibayashi S, Shiokawa O, Omae T (1983) Distribution of blood brain barrier following bilateral carotid artery occlusion in spontaneously hypertensive rats. Stroke 14:876–882PubMedCrossRefGoogle Scholar
  22. 22.
    Shigeno T, Taesdale GM, McCulloch J, Graham DI (1981) Recirculation model following MCA occlusion in rats. J Neurosurg 63:272–277Google Scholar
  23. 23.
    Teasdale G, Tyson G, Tamura A, Graham ID, McCulloch J (1983) Focal cerebral ischemia in the rat: neuropathology, local cerebral blood flow and cerebrovascular permeability. In: Stefanovich V (ed) Stroke animal models. Pergamon, Oxford (Advances in the Biosciences 43:83–97)Google Scholar
  24. 24.
    Westergaard E, Go KG, Klatzo I, Spatz M (1976) Increased permeability of cerebral vessels to horseradish peroxidase induced by ischemia in Mongolian gerbils. Acta Neuropathol 35:307–325PubMedGoogle Scholar
  25. 25.
    Wolman M, Chui E, Wilmes F, Mishimoto K, Fujiwara K, Spatz M (1981) Evolution of the dye-protein tracers in pathology of the blood-brain barrier. Acta Neuropathol 54:55–61PubMedCrossRefGoogle Scholar
  26. 26.
    Yanagihara T, McCall JR (1982) Ionic shift in cerebral ischemia. Life Sci 30:1921–1925PubMedCrossRefGoogle Scholar
  27. 27.
    Young W, Rappaport H, Chalif DJ, Flamm ES (1987) Regional brain sodium, potassium and water changes in the rat middle cerebral artery occlusion model of ischemia. Stroke 18:751–759PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • S. Sampaolo
    • 1
  • N. Heye
    • 1
  • J. Cervos-Navarro
    • 1
  1. 1.Institute of Neuropathology, Universitätsklinikum SteglitzFree University of BerlinBerlin 45Germany

Personalised recommendations