Skip to main content

Cellular Movements and Distribution of Calcium

  • Conference paper
Cerebral Ischemia and Calcium
  • 156 Accesses

Abstract

According to present knowledge any physiological or pharmacological stimulus somewhere in the chain of events occurring between fixation of an agent to its binding sites or receptor and final response requires ionized calcium (Ca2+) as a mediator (ionic messenger). This concerns a variety of physiological events like smooth, skeletal, and heart muscle contraction, exocytosis, phagocytosis, axonal transport, cell shape changes, cilial movement, cell division, sperm motility, conductance changes for other ions and for calcium itself, and regulation of metabolic activities (e.g., lipase and protein kinase activation), to give only a few examples. Proper physiological activation is, however, bound to a graded cytosolic increase of Ca2+ of well-controlled duration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen DG, Blinks JR (1978) Calcium transients in aequorin-injected frog cardiac muscle. Nature 273:509–513

    Article  PubMed  CAS  Google Scholar 

  • Ashley CC, Ridgway EB (1970) On the relationship between membrane potential, calcium transient and tension in single barnacle muscle fibres. J Physiol (Lond) 209:105–130

    CAS  Google Scholar 

  • Baker PF (1976) The regulation of intracellular calcium. Symp Soc Exp Biol 30:67–88

    CAS  Google Scholar 

  • Baker PF (1978) The regulation of intracellular calcium in giant axons of loligo and myxicola. Ann NY Acad Sci 307:250–268

    Article  PubMed  CAS  Google Scholar 

  • Baker PF, Schlaepfer WW (1975) Calcium uptake by axoplasm extruded from giant axons of loligo. J Physiol 249:37–38

    Google Scholar 

  • Baker PF, Schlaepfer WW (1978) Uptake and binding of calcium by axoplasm isolated from giant axons of loligo and myxicola. J Physiol 276:103–125

    PubMed  CAS  Google Scholar 

  • Baker PF, Umbach JA (1987) Calcium buffering in axons and axoplasm of loligo. J Physiol 383:369–394

    PubMed  CAS  Google Scholar 

  • Benga MP (1985) Structure and properties of cell membranes, vol. I, II, III. Benga G (ed). CRC Press, Boca Raton

    Google Scholar 

  • Blaustein MP (1974) Interrelationships between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol 70:33–82

    Article  PubMed  CAS  Google Scholar 

  • Blinks JR, Rüdel R, Taylor SR (1978) Calcium transients in isolated amphibian skeletal muscles. J Physiol (Lond) 277:291–323

    CAS  Google Scholar 

  • Bygrave FL (1977) Mitochondrial calcium transport. Curr Top Bioenerg 6:260–318

    Google Scholar 

  • Campbell AK (1985) Intracellular calcium, its universal role as regulator. Wiley, Chichester

    Google Scholar 

  • Carafoli E, Crompton M (1976) Calcium ion and mitochondria. Symp Soc Exp Biol 30:89–115

    CAS  Google Scholar 

  • Caroni P, Zurini M, Clark A, Carafoli E (1983) Further characterization and reconstitution of the purified Ca2+-pumping ATPase of heart sarcolemma. J Biol Chem 258:7305

    PubMed  CAS  Google Scholar 

  • Catteral WA, Hartshorne RP, Beneski DA (1982) Molecular properties of neurotoxin receptor sites associated with sodium channels from mammalian brain. Toxicon 20:27–40

    Article  Google Scholar 

  • Cavero I, Spedding M (1983) “Calcium antagonists”: a class of drugs with a bright future. Part I. Cellular calcium homeostasis and calcium as a coupling messenger. Life Sci 33:2571–2581

    Article  PubMed  CAS  Google Scholar 

  • Cullis PR, Kruijff B de, Hope MJ, Nayar R, Schmid SL (1980) Phospholipids and membrane transport. Can J Biochem 58:1091–1100

    PubMed  CAS  Google Scholar 

  • Di Polo R (1978) Ca pump driven by ATP in squid axons? Nature 274:340

    Google Scholar 

  • Ebashi S (1960) Calcium binding and relaxation in actomysin system. J Biochem 48:150–151

    CAS  Google Scholar 

  • Ebashi S (1961) Calcium binding activity of vesicular relaxing factor. J Biochem 50:236–244

    CAS  Google Scholar 

  • Eisner DA, Lederer WJ, Vaughn-Jones RD (1984) The quantitative relationship between twitch tension and intracellular sodium activity. J Physiol 355:251–266

    PubMed  CAS  Google Scholar 

  • Endo (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57:71–108

    PubMed  CAS  Google Scholar 

  • Fay FS, Shelvin HH, Granger WC, Taylor SR (1979) Aequorin luminescense during activation of single isolated smooth muscle cells. Nature 280:506–508

    Article  PubMed  CAS  Google Scholar 

  • Glitsch HG, Reuter H, Scholz H (1969) Influence of intracellular sodium concentrations on calcium influx of isolated guinea-pig auricles. Arch Pharmakol 264:236–237

    Article  CAS  Google Scholar 

  • Hasselbach W (1963) Relaxing factor and the relaxation of muscle. Prog Biophys Mol Biol 14:167–222

    Article  Google Scholar 

  • Heers C, Scheufler E, Wilhelm D, Wermelskirchen D, Wilffert B, Peters T (1988) The antiarrythmic effects of R 56865 in cardiac glycoside toxicity are not caused by inhibition of receptor binding. Br J Pharmacol 93:273P

    Google Scholar 

  • Hescheler J, Rosenthal W, Trautwein W, Schultz G (1987) The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325:445–447

    Article  PubMed  CAS  Google Scholar 

  • Hess P, Tsien RW (1984) Mechanism of ion permeation through calcium channels. Nature 309:453–456

    Article  PubMed  CAS  Google Scholar 

  • Kalix P (1977) Uptake and release of calcium in rabbit vagus nerve. Pflügers Arch 326:1–14

    Article  Google Scholar 

  • Latorre R, Coronado R, Vergara C (1984) K+-channels gated by voltage and ions. Ann Rev Physiol 46:485–495

    Article  CAS  Google Scholar 

  • Lee CO (1985) 200 years of digitalis: the emerging central role of the sodium ion in the control of cardiac force. Am J Physiol 249:C367–C378

    PubMed  CAS  Google Scholar 

  • Lee CO, Taylor A, Windhager EC (1980) Cytosolic calcium ion activity in epithelial cells of necturus kidney. Nature 287:859–861

    Article  PubMed  CAS  Google Scholar 

  • Lee H-C, Smith N, Mohabir R, Clusin WT (1987) Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci USA 84:7793–7797

    Article  PubMed  CAS  Google Scholar 

  • Lüllmann H, Peters T (1976) On the sarcolemmal site of action of cardiac glycosides. In Roy, Dhalla (eds) Recent advances in studies on cardiac structure and metabolism, vol 9. The sarcolemma. University Park Press, Baltimore, pp 311–328

    Google Scholar 

  • Lüllmann H, Peters T (1977) Plasmalemmal calcium in cardiac excitation-contraction coupling. Clin Exp Pharmacol Physiol 4:49–57

    Article  PubMed  Google Scholar 

  • Lüllmann H, Peters T, Preuner J (1983) Role of the plasmalemma for calcium homeostasis and for excitation-contraction coupling in cardiac muscle. In: Drake, Holland, Noble (eds) Cardiac metabolism. Wiley, Chichester, pp 1–18

    Google Scholar 

  • Manery JF (1969) Calcium and membranes. In: Comer, Bronner (eds) Mineral metabolism, vol 3. Academic Press, New York, pp 405–452

    Google Scholar 

  • Marban E, Tsien RW (1982) Enhancement of Ca-current during digitalis inotropy. J Physiol 329:589–614

    PubMed  CAS  Google Scholar 

  • Moore CL (1971) Specific inhibition of mitochondrial calcium transport by ruthenium red. Biochem Biophys Res Commun 42:298–305

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T, Tsunoo A, Yoshii M (1987) Characterization of two types of calcium channels in mouse neuroblastoma cells. J Physiol 383:231–249

    PubMed  CAS  Google Scholar 

  • Portzehl H, Caldwell PC, Rüegg JC (1964) The dependence of contraction and relaxation of muscle fibres from the crab Maia squinado on the internal concentration of free calcium ions. Biochim Biophys Acta 79:581–591

    PubMed  CAS  Google Scholar 

  • Post JA, Langer GA, Op den Kamp JAF, Verkleij AJ (in press) Phospholipid asymmetry in cardiac sarcolemma. Biochim Biophys Acta

    Google Scholar 

  • Preuner J (1981) Ca-homeostasis in cardiac muscle cell: an active Ca-pump and its functional dependence on plasma membrane bound Ca. Arch Pharmacol 316:30

    Google Scholar 

  • Reuter H (1986) Voltage-dependent mechanisms for raising intracellular free calcium concentration: calcium channels. In: Calcium and the cell (Ciba Foundation Symposium 122). Wiley, Chichester, pp 5–22

    Google Scholar 

  • Reuter H, Blaustein MP, Haeusler G (1973) Na-Ca-exchange and tension development in arterial smooth muscle. Phil Trans R Soc 265:87–94

    Article  CAS  Google Scholar 

  • Rosenberg RL, Hess P, Reeves JP, Smilowitz H, Tsien RW (1986) Calcium channels in planar lipid bilayers: insights into mechanisms of ion permeation and gating. Science 231:1564–1566

    Article  PubMed  CAS  Google Scholar 

  • Rudel R (1979) In: Ashley, Campbell (eds) Detection and measurement of free Ca++ in cells. Elsevier/North-Holland, Amsterdam, pp 153–158

    Google Scholar 

  • Schatzmann HJ (1966) ATP-dependent Ca++-extrusion from human red cells. Experientia 22:364

    Article  PubMed  CAS  Google Scholar 

  • Schneider J, Beck E, Wilffert B, Peters T (1988) A dose-dependent inhibition of digitalis-induced toxicity by R 56865 in the guinea-pig heart-lung preparation. Br J Pharmacol 93:272P

    Google Scholar 

  • Seimiya T, Ohki S (1973) Ionic structure of phospholipid membranes, and binding of calcium ions. Biochim Biophys Acta 298:546–561

    Article  PubMed  CAS  Google Scholar 

  • Siesjö BK (1985) Oxygen deficiency and brain damage: Localization, evolution in time, and mechanism of damage. Clin Tox 23:4–6

    Google Scholar 

  • Stahl WL, Swanson PD (1972) Calcium movements in brain slices in low sodium or calcium media. J Neurochem 19:2395–2407

    Article  PubMed  CAS  Google Scholar 

  • Vincenzi FF, Schatzmann HJ (1967) Some properties of Ca-activated ATPase in human red cells. Helv Physiol Pharmacol Acta 25:233

    Google Scholar 

  • Vollmer B, Meuter C, Janssen PAJ (1987) R 56865 prevents electrical and mechanical signs of ouabain intoxication in guinea-pig papillary muscle. Eur J Pharmacol 142:137–140

    Article  PubMed  CAS  Google Scholar 

  • Yeagle P (1987) The membranes of cells. Academic Press, New York

    Google Scholar 

  • Yoshikawa K, Fujimoto T, Shimooka T, Terada H, Kumazawa N, Ishii T (1988) Electrical oscillation and fluctuation in phospholipid membranes. Phospholipids can form a channel without protein. Biophys Chem 29:293–299

    Article  PubMed  CAS  Google Scholar 

  • Zwaal RFA, Roelofsen B, Colley CM (1973) Localization of red cell membrane constituents. Biochim Biophys Acta 300:159–183

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peters, T. (1989). Cellular Movements and Distribution of Calcium. In: Hartmann, A., Kuschinsky, W. (eds) Cerebral Ischemia and Calcium. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85863-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85863-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85865-9

  • Online ISBN: 978-3-642-85863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics