Skip to main content

The Effects of Transient and Long-Term Ischemia on Tissue PO2 in the Brain Cortex

  • Conference paper
Cerebral Ischemia and Calcium

Abstract

Ischemic attacks cause drastic vasodilatation in the brain circulation and subsequent hyperemia. Simultaneously the regulation of regional cerebral blood flow is impaired or abolished. Following cerebral ischemia, arterial hypercapnia (Yamaguchi et al. 1972; Seki et al. 1984) and changes in the concentrations of various vasoactive substances in the perivascular space have little or no effect on brain vessel diameter (Berne et al. 1974; Harris and Symon 1984; Strong et al. 1988). During microapplication studies on pial arteries a reduction of the reactivity to local metabolic factors such as H+ and K+ was observed (Haller and Kuschinsky 1981; Haller et al. 1986). As a consequence of the postischemic disturbance in cerebrovascular reactivity, an impaired adjustment of cerebral blood flow to the metabolic demand has to be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:51–57

    Article  PubMed  CAS  Google Scholar 

  • Berne RM, Rubio R, Curnich RR (1974) Release of adenosine from ischemic brain. Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35:262–271

    Article  CAS  Google Scholar 

  • Brassel F, Dettmers C, Nierhaus A, Hartmann A, Solymosi L (1988) An intravascular technique to occlude the middle cerebral artery in baboons. (in press)

    Google Scholar 

  • Fritz H, Hossmann KA (1979) Arterial air embolism in the cat brain. Stroke 10:581–589

    Article  PubMed  CAS  Google Scholar 

  • Grote J, Zimmer K, Schubert R (1981) Effects of severe arterial hypocapnia on regional blood flow regulation, tissue PO2 and metabolism in the brain cortex of cats. Pflügers Arch 391:195–199

    Article  PubMed  CAS  Google Scholar 

  • Hagendorff A, Haller C, Grote J (1986) Der Einfluß einer postischämischen Hypokapnie auf die cerebrale O2-Versorgung. In: Grote J, Witzleb E (eds) Physiologie und Pathophysiologie des Gefäßsystems. Funktionsanalyse biologischer Systeme 17. G. Fischer, Stuttgart, pp 165–173

    Google Scholar 

  • Haller C, Kuschinsky W (1981) Reactivity of pial arteries to K+ and H+ before and after ischemia induced by air embolism. Microcirculation 1:141–159

    Google Scholar 

  • Haller C, Kuschinsky W, Reimnitz P (1986) Effect of gamma-hydroxybutyrate on the reactivity of pial arteries before and after ischemia. J Cereb Blood Flow Metab 6:658–666

    Article  PubMed  CAS  Google Scholar 

  • Halsey JH, Clark LC (1970) Some regional circulatory abnormalities following experimental cerebral infarction. Neurology 20:238–246

    Article  PubMed  Google Scholar 

  • Harris RJ, Symon L (1984) Extracellular pH, potassium and calcium activities in progressive ischemia of rat cortex. J Cereb Blood Flow Metab 4:178–186

    Article  PubMed  CAS  Google Scholar 

  • Hossmann KA (1982) Treatment of experimental cerebral ischemia. J Cereb Blood Flow Metab 2:275–297

    Article  PubMed  CAS  Google Scholar 

  • Johansson BB (1980) Cerebral air embolism and the blood-brain barrier in the rat. Acta Neurol Scand 62:201–209

    Article  PubMed  CAS  Google Scholar 

  • Kessler M, Grunewald W (1969) Possibilities of measuring oxygen pressure fields in tissue by multiwire platinum electrodes. Prog Resp Res 3:147–152

    Google Scholar 

  • Lübbers DW, Baumgärtl H, Fabel H et al. (1969) Principles and construction of various platinum electrodes. Prog Resp Res 3:136–146

    Google Scholar 

  • Lübbers DW (1973) Local tissue PO2: its measurement and meaning. In: Kessler M, Bruley DF, Lübbers DW, Siver IA, Strauss J (eds) Oxygen supply, theoretical and practical aspects of oxygen supply and microcirculation of tissue. Urban and Schwarzenberg, Munich

    Google Scholar 

  • Mabe H, Blomqvist P, Siesjö BK (1983) Intracellular pH in the brain following transient ischemia. J Cereb Blood Flow Metab 3:109–114

    Article  PubMed  CAS  Google Scholar 

  • Nair PK, Buerk DG, Halsey JJ (1987) Comparison of oxygen metabolism and tissue PO2 in cortex and hippocampus of gerbil brain. Stroke 18:616–622

    Article  PubMed  CAS  Google Scholar 

  • Phelps ME, Mazziotta JC, Huang SC (1982) Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab 2:113–162

    Article  PubMed  CAS  Google Scholar 

  • Sakurada O, Kennedey C, Jehle J, Brown D, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo(14C)antipyrine. Am J Physiol 234:H59–H66

    PubMed  CAS  Google Scholar 

  • Seki H, Yoshimoto T, Ogawa A, Suzuki J (1984) The CO2 response in focal cerebral ischemia — sequential changes following recirculation. Stroke 15:699–704

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C et al. (1977) The (14C)deoxyglucose method for measurement of local cerebral glucose utilization: theory, procedure and normal values in conscious and anaesthetized albino rats. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Söntgerath C, Steuer K, Grote J (1984) Der Einfluß des PCO2 auf die Messung des O2-Partial-druckes mit Platin-Mikroelektroden. In: Grote J, Witzleb E (eds) Atemgaswechsel and O2-Versorgung der Organe. Funktionsanalyse biologischer Systeme 12. Steiner, Stuttgart, pp 172–179

    Google Scholar 

  • Strong AJ, Gibson G, Miller SA, Venables GS (1988) Changes in vascular and metabolic reactivity as indices of ischaemia in the penumbra. J Cereb Blood Flow Metab 8:79–88

    Article  PubMed  CAS  Google Scholar 

  • Vanhoutte PM, Rubayi GM, Miller YM, Houson PS (1986) Modulation of vascular smooth muscle contraction by the endothelium. Ann Rev Physiol 48:307–320

    Article  CAS  Google Scholar 

  • Yamaguchi T, Regli F, Waltz AG (1972) Effects of hyperventilation with and without carbon dioxide on experimental cerebral ischemia and infarction. Brain 95:123–132

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hagendorff, A. et al. (1989). The Effects of Transient and Long-Term Ischemia on Tissue PO2 in the Brain Cortex. In: Hartmann, A., Kuschinsky, W. (eds) Cerebral Ischemia and Calcium. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85863-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85863-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85865-9

  • Online ISBN: 978-3-642-85863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics