Cerebral Blood Flow in Patients with Chronic Respiratory Insufficiency, with Special Regard to Induced Acute Changes of the Blood Gas Situation

  • B. Ekström-Jodal
  • E. Häggendal


Convincing evidence of a tendency to normalization of the cerebral blood flow (CBF) in patients with chronic hypercapnia and simultaneous normalization of the pH of the cerebrospinal fluid (CSF) were presented by Skinhøj [10] at the International Symposium on “CSF and CBF” in Lund and Copenhagen in 1968. If the resistance of the cerebral blood vessels were mainly regulated by the CSF pH it seems natural that CBF is normalized parallel to the adaptation of the CSF (or more likely the extracellular fluid) pH to the altered arterial carbon dioxide tension [2, 3, 8, 9].


Cerebral Blood Flow Carbon Dioxide Tension Arterial Carbon Dioxide Tension Bicarbonate Content Arteriovenous Oxygen Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agnoli, A.: Adaptation of CBF during induced chronic normoxic respiratory acidosis. Scand. J. din. Lab. Invest. 22, Suppl 102, p. VIII:D (1968).Google Scholar
  2. 2.
    Betz, E., U. R. Kozak: Der Einfluß der WasserstofFionenkonzentration der Gehirnrinde auf die Regulation der cortikalen Durchblutung. Pflügers Arch. ges. Physiol. 293, 56 (1967).CrossRefGoogle Scholar
  3. 3.
    Fencl, V. J., R. Vale, and J. R. Broch: Cerebral blood flow and pulmonary ventilation in metabolic acidosis and alkalosis. Scand. J. din. Lab. Invest. 22, Suppl 102, p. VIII:B (1968).Google Scholar
  4. 4.
    Huang, C. T., and H. A. Lyons: The maintenance of acid-base balance between cerebrospinal fluid and arterial blood in patients with chronic respiratory disorders. Clin. Sei. 31, 273 (1966).Google Scholar
  5. 5.
    Kety, S. S., and C. P. Schmidt: The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J. din. Invest. 27, 484 (1948).Google Scholar
  6. 6.
    Lassen, N. A.: Cerebral blood flow and oxygen consumption in man determined by the inert gas diffusion method. Christtreus bogtrykkeri, 1958.Google Scholar
  7. 7.
    Severinghaus, J. W., R. A. Mitchell, B. W. Richardson, and M. M. Singer: Respiratory Control at high altitude suggesting active transport regulation of CSF pH. J. appl. Physiol. 18, 1155 (1963).PubMedGoogle Scholar
  8. 8.
    Severinghaus, J. W., H. Chiodi, E. J. Eger, II B. Brandstater, and T. F. Hornbein: Cerebral Blood Flow in Man at high altitude. Role of cerebrospinal fluid pH in normalization of flow in chronic hypocapnia. Circulat. Res. 19, 274 (1966).PubMedGoogle Scholar
  9. 9.
    Skinhøj, E.: Regulation of cerebral blood flow as a single function of the interstitial pH in the brain. Acta neurol. Scand. 42, 604 (1966).PubMedCrossRefGoogle Scholar
  10. 10.
    Skinhøj, E.: CBF adaptation to chronic hypo- and hypercapnia and its relation to CSF pH. Scand. J. din. Lab. Invest. 22, Suppl. 102, p. VIII: A (1968).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1969

Authors and Affiliations

  • B. Ekström-Jodal
    • 1
    • 2
  • E. Häggendal
    • 1
    • 2
  1. 1.Renströmska SjukhusetUniversity Lung ClinicGöteborgSweden
  2. 2.the Department of Clinical PhysiologyUniversity of GöteborgSweden

Personalised recommendations