Abstract

It is likely that, within the intact cell, the freedom of movement of all enzymes is restricted. To that extent they could all be considered structurally-bound. However, from the purely experimental point of view, it is a striking fact that when a cell is ruptured, a number of enzymes go into solution, while others remain firmly bound to more or less large particles, which can be sedimented in ordinary centrifuges. It is these enzymes which we think of when we refer to structurally-bound enzymes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmann, S. M., & E. M. Crook: Nature (Lond.) 171, 76 (1953).CrossRefGoogle Scholar
  2. Ball, E. G., C. B. Anfinsen & O. Cooper: J. of Biol. Chem. 168, 257 (1947).Google Scholar
  3. Battelli, F., & L. Stern: Erg. Physiol. 15, 96 (1912).CrossRefGoogle Scholar
  4. Bonner, W. D.: Biochemie J. 1953 (in the Press).Google Scholar
  5. Briggs, G. E., & J. B. S. Haldane: Biochemic J. 19, 338 (1925).Google Scholar
  6. Case, E. M., & F. Dickens: Biochemic J. 43, 481 (1948).Google Scholar
  7. Chance, B.: Nature (Lond.) 169, 215 (1952).CrossRefGoogle Scholar
  8. Claude, A.: J. of Exper. Med. 80, 19 (1944).CrossRefGoogle Scholar
  9. Cleland, K. W., & E. C. Slater (1953a): Submitted for publication.Google Scholar
  10. Cleland, K. W., & E. C. Slater (1953b): Biochemic J. 53, 547 (1953); Quarterly Journal of Microscopical Science (in the Press). Green, D. E.: Biol. Rev. 26, 410 (1951).Google Scholar
  11. Harman, J. W., & M. Feigelson: Exper. Cell Res. 3, 47 (1952).CrossRefGoogle Scholar
  12. Hogeboom, G. H., A. Claude & R. D. Hotchkiss: J. of Biol. Chem. 165, 615 (1946).Google Scholar
  13. Hogeboom, G. H., W. C. Schneider & G. E. Pallade: J. of Biol. Chem. 172, 619 (1948).Google Scholar
  14. Kaufman, S.: In Phosphorus Metabolism. Vol. 1, p. 370, Ed. by W. D. McElroy and Bentley Glass. Baltimore: Johns Hopkins Press 1951.Google Scholar
  15. Keilin, D.: Proc. Roy. Soc. B 98, 312 (1925).Google Scholar
  16. Keilin, D.: Réunion plenière. C. r. Soc. Biol. (Paris) 97, suppl. 39 (1927).Google Scholar
  17. Keilin, D.: Proc. Roy. Soc. B 104, 206 (1929).Google Scholar
  18. Keilin, D.: Proc. Roy. Soc. B 106, 418 (1930).Google Scholar
  19. Keilin, D., & E. F. Hartree: Proc. Roy. Soc. B 122, 298 (1937).Google Scholar
  20. Keilin, D., & E. F. Hartree: Proc. Roy. Soc. B 125, 171 (1938).Google Scholar
  21. Keilin, D., & E. F. Hartree: Proc. Roy. Soc. B 129, 277 (1940).Google Scholar
  22. Keilin, D., & E. F. Hartree: Biochemic J. 39, 289 (1945).Google Scholar
  23. Keilin, D., & E. F. Hartree: Biochemic J. 42, 221 (1948).Google Scholar
  24. Keilin, D., & E. F. Hartree: Biochemic J. 44, 205 (1949).Google Scholar
  25. Kisch, B., & J. M. Bardet: The electron microscopic histology of the heart. New York: Brooklyn Medical Press 1951.Google Scholar
  26. Kölliker, A.: Z. wiss. Zool. 47, 689 (1888).Google Scholar
  27. Laser, H.: Proc. Roy. Soc. B 140, 230 (1952).Google Scholar
  28. Lehninger, A. L.: In Enzymes and Enzyme Systems, Their State in Nature. Harvard University Press, Cambridge, Mass. 1951.Google Scholar
  29. Lineweaver, H., & D. Burk: J. Amer. Chem. Soc. 56, 658 (1934).CrossRefGoogle Scholar
  30. Mahler, H. R., N. K. Sarkar, L. P. Vernon & R. A. Alberty: J. of Biol. Chem. 199, 585 (1952).Google Scholar
  31. Massey, V.: Biochemic J. 51, 490 (1952).Google Scholar
  32. Michaelis, L.: Adv. Enzym. 9, 1 (1949).Google Scholar
  33. Michaelis, L., & M. L. Menten: Biochem. Z. 49, 333 (1913).Google Scholar
  34. Morton, R. K.: Nature (Lond.) 166, 1092 (1950).CrossRefGoogle Scholar
  35. Ochoa, S.: J. of Biol. Chem. 151, 493 (1943).Google Scholar
  36. Ochoa, S.: J. of Biol. Chem. 155, 87 (1944).Google Scholar
  37. Ochoa, S., J. R. Stern & M. C. Schneider: J. of Biol. Chem. 193,691 (1951).Google Scholar
  38. Potter, V. R., & A. E. Reif: J. of Biol. Chem. 194, 287 (1952).Google Scholar
  39. Quastel, J. H., & W. R. Wooldridge: Biochemic J. 22, 689 (1928).Google Scholar
  40. Retzius, G.: Biol. Untersuch. N. F. 1, 51 (1890).Google Scholar
  41. Schneider, W. C, A. Claude & G. H. Hogeboom: J. of Biol. Chem. 172, 451 (1948).Google Scholar
  42. Slater, E. C. (1949a): Biochemic J. 45, 8 (1949).Google Scholar
  43. Slater, E. C. (1949b): Biochemic J. 45, 14 (1949).Google Scholar
  44. Slater, E. C. (1949c): Biochemic J. 45, 1 (1949).Google Scholar
  45. Slater, E. C. (1949d): Biochemic J. 44, 305 (1949).Google Scholar
  46. Slater, E. C. (1950a): Nature (Lond.) 166, 982 (1950).CrossRefGoogle Scholar
  47. Slater, E. C. (1950b): Biochemic J. 46, 484 (1950).Google Scholar
  48. Slater, E. C., & W. D. Bonner: Biochemic J. 52, 185 (1952).Google Scholar
  49. Slater, E. C, & K. W. Cleland: Biochemic J. 1953 (in the Press).Google Scholar
  50. Slater, E. C, & F. A. Holton: Biochemic J. 1953 (in the Press).Google Scholar
  51. Smith, E. L., & E. Stotz: Federat. Proc. 9, 230 (1950).Google Scholar
  52. Straub, F. B.: Biochemic J. 33, 787 (1939).Google Scholar
  53. Theorell, H.: Biochemic Z. 279, 463 (1935).Google Scholar
  54. Thorn, M. B.: Biochemic J. 53, i (1953).Google Scholar
  55. Tsou, C. L.: Biochemic J. 49, 512 (1951).Google Scholar
  56. Tsou, C. L.: Biochemic J. 50, 493 (1952).Google Scholar
  57. Warburg, O.: Pflügers Arch. 67, 615 (1913).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1953

Authors and Affiliations

  • E. C. Slater
    • 1
  1. 1.Molteno InstituteUniversity of CambridgeUK

Personalised recommendations