Rhodopsin Processes and the Function of the Pupil Mechanism in Flies

  • D. G. Stavenga
  • A. Zantema
  • J. W. Kuiper


In the photoreceptor cells of the compound eye of the fly pigment granules migrate under the influence of a change in light intensity (1). The light flux in the cell’s rhabdomere, which contains the visual pigment molecules and functions as a light guide, depends on the number of pigment granules present near the rhabdomere. This number of absorbing and scattering granules is small in the dark adapted state and increases with light adaptation. To describe this pupil mechanism we have proposed an electrophoresis model (2) in which the force exerted on the pigment granules is a consequence of the change in membrane potential following rhodopsin conversion. We present here results of more extensive studies on rhodopsin conversion processes and closely related properties of the pigment granules.


Spectral Sensitivity Difference Spectrum Photoreceptor Cell Colour Vision Pigment Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    KIRSCHFELD, K., N. FRANCESCHINI: Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 13–22 (1969).Google Scholar
  2. 2.
    STAVENGA, D.G.: Adaptation in the compound eye. Proc. Int. Union Physiol. Sc. IX, 532, XXV Int. Congr. Munich (1971).Google Scholar
  3. 3.
    FRANCESCHINI, N., K. KIRSCHFELD: Les phénomènes de la pseudopupille dans l’oeil composé de Drosophila. Kybernetik 9, 159–182 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    LANGER, H.: Über die Pigmentgranula im Facettenauge von Calliphora erythrocephala. Z. vergl. Physiol. 55, 354–377 (1967).CrossRefGoogle Scholar
  5. 5.
    HAMDORF, K., R. PAULSEN, J. SCHWEMER: Photoregeneration and sensitivity control of photoreceptors of invertebrates. This volume, pp. 155–166.Google Scholar
  6. 6.
    ECKERT, H.: Die spektrale Empfindlichkeit des Komplexauges von Musca (Bestimmung aus Messungen der optomotorischen Reaktion). Kybernetik 9, 145–156 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    SNYDER, A.W., W. H. MILLER: Fly Colour Vision. Vision Res. 12., 1389–1396 (1971).CrossRefGoogle Scholar
  8. 8.
    KIRSCHFELD, K.: Aufnahme und Verarbeitung optischer Daten im Komplexauge von Insekten. Naturwissenschaften 58, 201–209 (1971).PubMedCrossRefGoogle Scholar
  9. 9.
    FINGERMAN, M., F. A. BROWN JR.: Color discrimination and physiological duplicity of Drosophila vision. Physiol. Zool. 26, 59–67 (1953).Google Scholar
  10. 10.
    FINGERMAN, M., F.A. BROWN JR.: A “Purkinje shift” in insect vision. Science 116, 171–172 (1952).PubMedCrossRefGoogle Scholar
  11. 11.
    BURKHARDT, D.: Spectral sensitivity and other response characteristics of single visual cells. Symp. Soc. exp. Biol. 16, 86–109 (1962).Google Scholar
  12. 12.
    LANGER, H.: Spektrometrische Untersuchung der Absorptionseigenschaften einzelner Rhabdomere im Facettenauge. Verh. Dtsch. Zool. Gesellsch. Jena 1965. Zoolog. Anz., Suppl. 29, 329–338 (1966).Google Scholar
  13. 13.
    LANGER, H.: Grundlagen der Wahrnehmung von Wellenlänge und Schwingungsebene des Lichtes. Verh. Dtsch. Zoolog. Gesellsch. Göttingen 1966. Zoolog. Anz., Suppl. 30, 195–233 (1967).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • D. G. Stavenga
    • 1
  • A. Zantema
    • 1
  • J. W. Kuiper
    • 1
  1. 1.Department of BiophysicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations