Vascular renin-angiotensin-system, endothelial function and atherosclerosis?

  • J. Holtz
  • R. M. Goetz


Clinical observations demonstrate an enhanced risk for myocardial infarction in patients with substained activation of the local and/or systemic renin-angiotensin system, such as a high renin-sodium profile or a heritably enhanced expression of angiotensin converting enzyme. Chronic renin-angiotensin system blockade by angiotensin converting enzyme inhibition in patients with moderate heart failure reduces the rate of myocardial infarction and reinfarction. Preliminary experimental evidence suggests that these clinical observations may be partially explained by a proatherogenic effect of an activated renin-angiotensin system, which can downregulate the endothelial releasability of nitric oxide. Nitric oxide exerts many potentially antiatherogenic effects on endothelium, platelets and low density lipoproteins and indirectly on monocytes and leukocytes. Hypertension-induced chronic distension of elastic arteries upregulates the local renin-angiotensin system in these arteries and thereby downregulates nitric oxide releasability. Enhanced local synthesis of the trophic factor angiotensin-II and reduced releasability of the antitrophic factor nitric oxide appear to cooperate in the trophic adaptation of the distended vessel wall to the enhanced load, but with the disadvantage of enhanced susceptibility for atheroma development due to reduced releasability of nitric oxide. Chronic blockade of the renin angiotensin system by angiotensin converting enzyme inhibitors or by angiotensin receptor type-1 antagonists normalizes a reduced endothelial releasability of nitric oxide in several models, partially by a bradykinin-dependent mechanism. This endothelial protection proved to attenuate the progression of atheroslerosis in experimental models. The antiatherogenic potential of renin angiotensin system blockade in humans is presently under study.

Key words

Nitric oxide monocyte adhesion platelet activation ACE inhibition angiotensin receptor antagonist endothelial protection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aberg G, Ferrer P (1990) Effects of Captopril on atherosclerosis in cynomolgus monkeys. J Cardio vase Pharmacol 15: S65–S72Google Scholar
  2. 2.
    Alderman MH, Madhavan S, Ooi WL, Cohen H, Sealy JE, Laragh JH (1991) Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. N Engl J Med 324: 1098–1104CrossRefPubMedGoogle Scholar
  3. 3.
    Assender JW, Southgate KM, Newby AC (1991) Does nitric oxide inhibit smooth muscle proliferation? J Cardiovasc Pharmacol 17 (suppl 3): S104 - S107CrossRefGoogle Scholar
  4. 4.
    Azuma JA, Ishikawa M, Sekizaki S (1986) Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol 88: 411–415PubMedGoogle Scholar
  5. 5.
    Bath PM, Hassall DG, Gladwin AM, Palmer RM, Martin JF (1991) Nitric oxide and prostacyclin: divergence of inhibitory effects on monocyte Chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb 11: 254–260CrossRefPubMedGoogle Scholar
  6. 6.
    Beasley D, Schwartz JH, Brenner BM (1991) Interleukin 1 induces prolonged L-argjnine- dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells. J Clin Invest 87: 602–608CrossRefPubMedGoogle Scholar
  7. 7.
    Becker RHA, Wiemer G, Linz W (1991) Preservation of endothelial function by ramipril in rabbits on a long-term atherogenic diet. J Cardiovasc Pharmacol 18 (suppl 2): S110 - S115PubMedGoogle Scholar
  8. 8.
    Beierwaltes WH, Carretero OA (1989) Kinin antagonist reverses converting enzyme inhibitor-stimulated vascular prostaglandin 12 synthesis. Hypertension 13: 754–758PubMedGoogle Scholar
  9. 9.
    Berg T, Carretero OA, Scicli AG, Tilley B, Stewart JM(1989) Role of kinin in regulation of rat submandibular gland blood flow. Hypertension 14: 73–80PubMedGoogle Scholar
  10. 10.
    Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B, Esterson M, Fogelman AM (1990) Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 85: 1260–1266CrossRefPubMedGoogle Scholar
  11. 11.
    Block LH, Keul R, Crabos M, Ziesche R, Roth M (1993) Transcriptional activation of low density lipoprotein receptor gene by angiotensin-converting enzyme inhibitors and Ca2+- channel blockers involves protein kinase C isoforms. Proc Nat Acad Sci USA 90: 4097–4101CrossRefPubMedGoogle Scholar
  12. 12.
    Böhme E, Jung R, Melcher I (1974) Guanylate cyclase in human platelets. Nature 11: 1–2Google Scholar
  13. 13.
    Busse R, Liickhoff A, Bassenge E (1987) Endothelium-derived relaxant factor inhibits platelet activation. Naunyn-Schmiedebergs Arch Pharmacol 336: 566–571PubMedGoogle Scholar
  14. 14.
    Busse R, Lamontagne D (1991) Endothelium-derived bradykinin is responsible for the increase in calcium produced by angiotensin-converting enzyme inhibitors in human endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 344: 126–129CrossRefPubMedGoogle Scholar
  15. 15.
    Busse R, Mülsch A, Fleming I, Hecker M (1993) Mechanisms of nitric oxide release from the vascular endothelium. Circulation 87 (suppl V): V18 - V25Google Scholar
  16. 16.
    Cachofeiro V, Nasjletti A (1991) Increased vascular responsiveness to bradykinin in kidneys of spontaneously hypertensive rats: Effect of Nw-nitro-L-arginine. Hypertension 18: 683–688PubMedGoogle Scholar
  17. 17.
    Cachofeiro V, Sakakibara T, Nasjletti A (1992) Kinins, nitric oxide, and the hypotensive effect of Captopril and ramiprilat in hypertension. Hypertension 19: 138–145Google Scholar
  18. 18.
    Calver A, Collier J, Moncada S, Vallance P (1992) Effect of local intraarterial N-G- monomethyl-L-arginine in patients with hypertension: the nitric oxide dilator mechanism appears abnormal. J Hypertens 10: 1025–1031CrossRefPubMedGoogle Scholar
  19. 19.
    Cambien F, Poirier O, Lecerf L, Evans A, Cambon JP, Arveiler D, Lut G, Bard JM, Bara L, Ricard F, Piret L, Amouyel P, Ahlenc-Gelas F, Soubrier F (1992) Deletion polymorphism in the gene for angiotensin converting enzyme is a potent risk factor for myocardial infarction. Nature 359: 641–644CrossRefPubMedGoogle Scholar
  20. 20.
    Capron L, Heudes D, Charjara A, Bruneval P (1991) Effect of ramipril, an inhibitor of angiotensin converting enzyme, on the response of rat thoracic aorta to injury with a balloon catheter. J Cardiovasc Pharmacol 18: 207–211CrossRefPubMedGoogle Scholar
  21. 21.
    Carbonell LF, Carretero OA, Stewart JM, Scicli AG (1988) Effect of a kinin antagonist on the acute antihypertensive activity of enalaprilat in severe hypertension. Hypertension 11: 239–243PubMedGoogle Scholar
  22. 22.
    Carretero OA, Scicli AG (1991) Local hormonal factors (intracrine, paracrine, autocrine) in hypertension. Hypertension 18 (suppl I): 158–169Google Scholar
  23. 23.
    Chin J, Azhar S, Hoffman BB (1992) Inactivation of endothelial derived relaxing factor by oxidized lipoproteins. J Clin Invest 89: 10–18CrossRefPubMedGoogle Scholar
  24. 24.
    Chobanian AV, Haudenschild CC, Nickerson C, Drago R (1990) Antiatherogenic effect of captopril in the Watanabe heritable hyperlipidemic rabbit. Hypertension 15: 327–331PubMedGoogle Scholar
  25. 25.
    Chobanian AV, Haudenschild CC, Nickerson C, Hope S (1992) Trandolapril inhibits atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Hypertension 20: 473–477Google Scholar
  26. 26.
    Clozel M, Kuhn H, Hefti F (1990) Effects of angiotensin converting enzyme inhibitors and of hydralazine on endothelial function in hypertensive rats. Hypertension 16: 532–540PubMedGoogle Scholar
  27. 27.
    Cohn JN (1992) The prevention of heart failure: anewagenda. N Engl J Med 327: 725–727CrossRefPubMedGoogle Scholar
  28. 28.
    Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME (1992) Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 90: 1168–1172CrossRefPubMedGoogle Scholar
  29. 29.
    Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwarz CJ, Fogelman AM (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 87: 5134–5138CrossRefPubMedGoogle Scholar
  30. 30.
    Cybulsky MI, Gimbrone MA (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251: 788–791CrossRefPubMedGoogle Scholar
  31. 31.
    Danckwardt L, Shimizu I, Bonner G, Rettig R, Unger T(1990) Converting enzyme inhibition in kinin-deficient Brown Norway rats. Hypertension 16: 429–435Google Scholar
  32. 32.
    DeBlois D, Lombardi DM, Garvin MA, Schwartz SM (1992) Inhibition by ramipril of intimal hyperplasia in the denuded rat carotid is reserved by Hoe 140, a kinin B2 receptor antagonist (abstr). Circulation 86 (suppl I): 1226Google Scholar
  33. 33.
    De’Mey JG, Gray SD (1985) Endothelium-dependent reactivity in resistance vessels. Prog Appl Microcirc 88: 181–187Google Scholar
  34. 34.
    Dohi Y, Thiel MA, Biihler FR, Luscher TP (1990) Activation of endothelial L-arginine pathway in resistance arteries: effect of age and hypertension. Hypertension 16: 170–179PubMedGoogle Scholar
  35. 35.
    Dzau VJ, Gibbons GH, Pratt RE (1991) Molecular mechanisms of vascular reninangiotensin system in myointimal hyperplasia. Hypertension 18 (suppl II): II100–II105PubMedGoogle Scholar
  36. 36.
    Erdos EG (1990) Angiotensin I converting enzyme and the changes in our concepts through the years: Lewis K Dahl memorial lecture. Hypertension 16: 363–370PubMedGoogle Scholar
  37. 37.
    Fahrhy RD, Ho KL, Carretero OA, Scicli AG (1991) Kinins mediate the antiproliferative effect of ramipril in rat carotid artery. Biochem Biophys Res Commun 182: 283–288CrossRefGoogle Scholar
  38. 38.
    Farhy RD, Carretero OA, Ho KL, Scicli AG (1993) Role of kinins and nitric oxide in the effects of angiotensin converting enzyme inhibitors on neointima formation. Circ Res 72: 1202–1210PubMedGoogle Scholar
  39. 39.
    Furlong B, Henderson AH, Leweis MJ, Smith JA (1987) Endothelium-derived relaxant factor inhibits in vitro platelet aggregation. Br J Pharmacol 90: 687–692PubMedGoogle Scholar
  40. 40.
    Galle J, Bassenge E (1991) Effects of native and oxidized low-density lipoproteins on endothelium-dependent and endothelium-independent vasomotion. Basic Res Cardiol 86 (suppl): 127–142CrossRefPubMedGoogle Scholar
  41. 41.
    Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monoposphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83: 1774–1777CrossRefPubMedGoogle Scholar
  42. 42.
    Geritty RG (1981) The role of the monocyte in atherogenesis. I: Transition of bloodborne monocytes into foam cells in fatty lesions. Am J Pathol 103: 181–190Google Scholar
  43. 43.
    Geritty RG (1981) The role of the monocyte atherogenesis. II: Migration of foam cells from atherosclerotic lesions. Am J Pathol 103: 191–200Google Scholar
  44. 44.
    Goetz RM, Krivokuca M, Holtz J (1992) Local activity of angiotensin converting enzyme and local endothelium-dependent dilatory reactivity in coarctation hypertension (abstr). Circulation 86: 1558Google Scholar
  45. 45.
    Goetz RM, Studer R, Reinecke H, Holtz J (1993) Enhanced gene expression of angioten-sin converting enzyme accounts for endothelial dilatory dysfunction in aorta of rats with coarctation hypertension. Eur Heart J 14 (suppl) 347Google Scholar
  46. 46.
    Goetz RM, Kuch M, Holtz J (1993) Chronische nicht-hypotensive Angiotensin-Rezeptor- Blockade in Hochdruck Ratten: Normalisierung der endothelialen Dilatation (abstr) Z Kardiol 82 (suppl 1): 133Google Scholar
  47. 47.
    Gryglewski RJ, Palmer RMJ, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456CrossRefPubMedGoogle Scholar
  48. 48.
    Guerra R, Brotherton AFA, Goodwin PJ, Clark CR, Armstrong JL, Harrison DG (1989) Mechanisms of abnormal endothelium-dependent vascular relaxation in atherosclerosis: implications for altered autocrine and paracrine functions of EDRF. Blood Vessels 26: 300–314PubMedGoogle Scholar
  49. 49.
    Hajjali AF, Zimmerman BG (1992) Nitric oxide participation in renal hemodynamic effect of angiotensin converting enzyme inhibitor lisinopril. Eur J Pharmacol 212: 279–281CrossRefGoogle Scholar
  50. 50.
    Hawkins DJ, Meyrick BO, Murray JJ (1988) Activation of guanylate cyclase and inhibition of platelet aggregation by endothelium-derived relaxing factor released from cultured cells. Biochim Biophys Acta 969: 289–296CrossRefPubMedGoogle Scholar
  51. 51.
    Heinecke JW, Baker L, Rosen H, Chait A (1986) Superoxide-mediated modifications of low density lipoprotein by arterial smooth muscle cells. J Clin Invest 77: 757–761CrossRefPubMedGoogle Scholar
  52. 52.
    Henning B, Chow CK (1988) Lipid peroxidation and endothelial cell injury: implications in atherosclerosis. Free Radical Biol Med 4: 99–106CrossRefGoogle Scholar
  53. 53.
    Hirooka Y, Imaizumi T, Masaki H, Ando S, Harada S, Momohara M, Takeshita A (1992) Captopril improves impaired endothelium-dependent vasodilation in hypertensive patients. Hypertension 20: 175–180PubMedGoogle Scholar
  54. 54.
    Hogan JC, Lewis MJ, Henderson AH (1988) In vivo EDRF activity influences platelet function. Br J Pharmacol 94: 1020–1022PubMedGoogle Scholar
  55. 55.
    Holtz J, Goetz RM (1991) Peptides in coronary circulation: basis for therapeutic strategies. Eur Heart J 12 (suppl F): 112–120PubMedGoogle Scholar
  56. 56.
    Itoh H, Pratt RE, Dzau VJ (1990) Atrial atriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J Clin Invest 86: 1690–1697CrossRefPubMedGoogle Scholar
  57. 57.
    Itoh H, Pratt RE, Dzau VJ (1991) Interaction of atrial natriuretic polypeptide and angiotensin II on protooncogenene expression and vascular cell growth. Biochem Biophys Res Commun 176: 1601–1609CrossRefPubMedGoogle Scholar
  58. 58.
    Johnson A, Lermioglu F, Garg UC, Morgan-Boyd R, Hassid A (1988) A novel biological effect of atrial natriuretic hormone: Inhibition of mesangial cell proliferation. Biochem Biophys Res Commun 152: 993–997CrossRefGoogle Scholar
  59. 59.
    Johnson G, Taso PS, Mulloy D, Lefer AM (1990) Cardioprotective effects of acidified sodium nitrite in myocardial ischemia with reperfusion. J Pharmacol Exp Ther 252: 35–41PubMedGoogle Scholar
  60. 60.
    Joly GA, Schini VB, Vanhoutte PM (1992) Balloon injury and interleukin–1/3 induce nitric oxide synthase activity in rat carotid arteries. Circ Res 71: 331–338PubMedGoogle Scholar
  61. 61.
    Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88: 4651–4655CrossRefPubMedGoogle Scholar
  62. 62.
    Laporte S, Gervais A, Escher E (1991) Angiotensin II antagonists prevent the myo- proliferative response after vascular injury (abstr). FASEB J 5: A869Google Scholar
  63. 63.
    Lehr HA, Hübner C, Finckh B, Angermüller S, Nolte D, Beisiegel U, Kohlschütter A, Messmer K (1991) Role of leukotrienes in leukocyte adhesion following systemic administration of oxidatively modified human low density lipoprotein in hamsters. J Clin Invest 88: 9–14CrossRefPubMedGoogle Scholar
  64. 64.
    Lehr HA, Becker M, Marklund SL, Hübner C, Arfors E, Kohlschütter A, Messmer K (1992) Superoxide-dependent stimulation of leukocyte adhesion by oxidatively modified LDL in vivo. Arteriosclerosis 12: 824–829CrossRefGoogle Scholar
  65. 65.
    Linder L, Kiowski W, Bühler FR, Lüscher TF (1990) Indirect evidence for release of endothelium-derived relaxing factor in the human forearm circulation in vivo: blunted response in essential hypertension. Circulation 81: 1762–1767CrossRefPubMedGoogle Scholar
  66. 66.
    Linz W, Schölkens BA (1990) A specific B2-bradykinin receptor antagonist HOE 140 abolishes the antihypertrophic effect of ramipril. Br J Pharmacol 105: 771–772Google Scholar
  67. 67.
    Lockette W, Otsuka Y, Carretero O (1986) The loss of endothelium-dependent vascular relaxation in hypertension. Hypertension 8 (suppl II): 1161–1166Google Scholar
  68. 68.
    Lüscher TF, Vanhoutte PM (1986) Endothelium-dependent responses to platelets and serotonin in spontaneously hypertensive rats. Hypertension 8 (suppl II): II55-II60Google Scholar
  69. 69.
    Lüscher TF, Boulanger CM, Yang Z, Noll G, Dohi Y (1993) Interactions between endothelium-derived relaxing and contracting factors in health and cardiovascular disease. Circulation 87 (suppl V): V36 - V44Google Scholar
  70. 70.
    Lüscher TF, Haefeli WE (1993) L-Arginine in the clinical arena: Tool or remedy? Circulation 87: 1746–1748PubMedGoogle Scholar
  71. 71.
    Mao S, Yates M, Lambert L, Whitten J, McDonald I, Ku G, Mano M (1992) Nitric oxide protects the oxidative modification of low density lipoprotein by macrophages. FASEB J 6: A549Google Scholar
  72. 72.
    Matsubara T, Ziff M (1986) Increased superoxide anion release from human endothelial cells in response to cytokines. J Immunol 137: 3295–3298PubMedGoogle Scholar
  73. 73.
    MatsudaY, Hirata K, Inoue N, SuematsuM, Kawashima S,Akita H,Yokoyama M (1993) High density lipoprotein reverses inhibitory effect of oxidized low density lipoprotein on endothelium-dependent arterial relaxation. Circ Res 72: 1103–1109Google Scholar
  74. 74.
    Miller VM (1990) Does antihypertensive therapy improve the function of the vascular endothelium? Hypertension 16: 541–543PubMedGoogle Scholar
  75. 75.
    Minor RL, Myers PR, Guerra R, Bates JN, Harrison DG (1990) Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest 86: 2109–2116CrossRefPubMedGoogle Scholar
  76. 76.
    Miyazaki M, Okunishi H, Okamura T, Toda N (1987) Elevated vascular angiotensin con-verting enzyme in chronic two-kidney, one clip hypertension in the dog. J Hypertens 5: 155–160Google Scholar
  77. 77.
    Miyazaki M, Okamura T, Toda N (1988) Role of vascular angiotensin converting enzyme in hypertension. J Hypertens 6 (suppl 3): S13 - S15Google Scholar
  78. 78.
    O’Connor KJ, Knowles RG, Patel KD (1991) Nitrovasodilators have proliferative as well as antiproliferative effects. J Cardiovasc Pharmacol 17 (suppl 3): S100 - S103CrossRefGoogle Scholar
  79. 79.
    Okamura T, Miyazaki M, Inagami T, Toda N (1986) Vascular renin-angiotensin system in two-kidney, one clip hypertensive rats. Hypertension 8: 560–565PubMedGoogle Scholar
  80. 80.
    Okunishi H, Kawamoto T, Kurobe Y, Oka Y, Ishii K, Tanaka T, Miyazaki M (1991) Pathogenetic role of vascular angiotensin converting enzyme in the spontaneously hypertensive rat. Clin Exp Pharmacol Physiol 18: 649–659CrossRefPubMedGoogle Scholar
  81. 81.
    Osterrieder W, Müller RKM, Powell JS, Clozel JP, Hefti F, Baumgartner HR (1991) Role of angiotensin II in injury-induced neointima formation in rats. Hypertension 18 (suppl II): II60–II64PubMedGoogle Scholar
  82. 82.
    Panza JA, Quyyumi AA, Brush JE, Epstein SE (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323: 22–27CrossRefPubMedGoogle Scholar
  83. 83.
    Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA (1993) Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation 87: 1468–1474PubMedGoogle Scholar
  84. 84.
    Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ, Cuddy TE, Davis BR, Galtman EM, Goldman S, Flaker GC, Klein M, Lamas GA, Packer M, Rouleau J, Rouleau JL, Rutherford J, Wertheimer JH, Hawkins CM (1992) Effect of Captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: Results of the survival and ventricular enlargement trial. N Engl J Med 327: 669–677CrossRefPubMedGoogle Scholar
  85. 85.
    Powel JS, Clozel JP, Müller RK, Kuhn H, Hefti F, Hosang M, Baumgartner HR (1989) Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 245: 186–188CrossRefGoogle Scholar
  86. 86.
    Prescott MF, Webb RL, Reidy MA (1991) Angiotensin-converting enzyme inhibitor versus angiotensin II, ATI receptor antagonist: Effects on smooth muscle cell migration and proliferation after balloon catheter injury. Am J Pathol 139: 1291–1296PubMedGoogle Scholar
  87. 87.
    Quilley J, Duchin KL, Hudes EM, McGiff JC (1987) The antihypertensive effect of Cap-topril in essential hypertension: Relationship to prostaglandins and the kallikrein-kinin system. J Hypertens 5: 121–128CrossRefPubMedGoogle Scholar
  88. 88.
    Radomski MW, Palmer RMJ, Moneada S (1987) Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide, and prostacyclin in platelets. Br J Pharmacol 92: 181–187PubMedGoogle Scholar
  89. 89.
    Ross R (1986) The pathogenesis of atherosclerosis. N Engl J Med 314: 488–500CrossRefPubMedGoogle Scholar
  90. 90.
    Schray-Utz B, Zeiher A, Busse R (1993) The expression of monocyte chemoattractant protein (MCP–1) mRNA in human endothelial cells in modulated by nitric oxide. FASEB J 7: A130Google Scholar
  91. 91.
    Schuh JR, Blehm DJ, Friedrich GE, McMahon EG, Blaine EH (1992) Differential effects of renin angiotensin system blockade on atherogenesis in cholesterol-fed rabbits (abstr). FASEB J 6: A1031Google Scholar
  92. 92.
    Scott-Burden T, Hahn AWA, Resink TJ, Bühler FR (1990) Modulation of extracellular matrix by angiotensin II: stimulation of glycoconjugate synthesis and growth in vascular smooth muscle cells. J Cardiovasc Pharmacol 16: S36 - S41CrossRefPubMedGoogle Scholar
  93. 93.
    Scott-Burden T, Schini VB, Vanhutte PM (1992) Induction by interleukin–1/3 of nitric oxide synthase leads to inhibition of mitogen-stimulated DNA synthesis in cultured vascular smooth muscle cells. In: Biology of nitric oxide, Moneada S, Marietta MA, Hibbs JB (eds) Portland Press, London, pp 48–52Google Scholar
  94. 94.
    Scott-Burden T, Vanhoutte PM (1993) The endothelium as a regulator of vascular smooth muscle proliferation. Circulation 87 (suppl V): V51 - V55Google Scholar
  95. 95.
    Sealey JE, Blumenfeld JD, Bell GM, Pecker MS, Sommers SC, Laragh JH (1988) On the renal basis for essential hypertension: nephron heterogeneity with discordant renin secretion and sodium excretion causing a hypertensive vasoconstriction-volume relationship. J Hypertens 6: 763–777CrossRefPubMedGoogle Scholar
  96. 96.
    Shiota N, Miyazaki M, Okunishi H (1992) Increase of angiotensin converting enzyme gene expression in the hypertensive aorta. Hypertension 20: 168–174PubMedGoogle Scholar
  97. 97.
    Shultz PJ, Raij L (1989) Effects of antihypertensive agents on endothelium-dependent and endothelium-independent relaxations. Br J Clin Pharmacol 28: 1515–1525Google Scholar
  98. 98.
    Simpson PJ, Todd RF, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR (1988) Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti- Mol, anti Cdllb) that inhibits leukocyte adhesion. J Clin Invest 81: 624–629CrossRefPubMedGoogle Scholar
  99. 99.
    Simpson PJ, Todd RF, Mickelson JK, Fantone JC, Gallagher KP, Lee KA, Tamura Y, Cronin M, Lucchesi BR (1990) Sustained limitation of myocardial reperfusion injury by a monoclonal antibody that alters leukocyte function. Circulation 81: 226–237CrossRefPubMedGoogle Scholar
  100. 100.
    SOLVD Investigators (1991) Effect of enalapril on survival in patients with reduced left ventricular ejections fractions and congestive heart failure. N Engl J Med 325: 293–302CrossRefGoogle Scholar
  101. 101.
    Steinberg D (1983) Lipoproteins and atherosclerosis: a look back and a look ahead. Arteriosclerosis 3: 283–301CrossRefPubMedGoogle Scholar
  102. 102.
    Taddei S, Virdis A, Abdel-Haq B, Giovannetti R, Duranti P, Arena AM, Favilla S, Salvetti A (1993) Indirect evidence for vascular uptake of circulating renin in hypertensive patients. Hypertension 21: 852–860PubMedGoogle Scholar
  103. 103.
    Tagawa H, Tomoike H, Nakamura M (1991) Putative mechanisms of the impairment of endothelium-dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res 68: 330–337PubMedGoogle Scholar
  104. 104.
    Tanner FC, Noll G, Boulanger CM, Lüscher, TF (1991) Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries: role of scavenger receptor and endothelium-derived nitric oxide. Circulation 83: 2012–2020PubMedGoogle Scholar
  105. 105.
    Tesfariam B, Halpern W (1988) Endothelium-dependent and endothelium-independent vasodilation in resistance arteries from hypertensive rats. Hypertension 11: 440–444Google Scholar
  106. 106.
    Tiffany CW, Burch RM (1989) Bradykinin stimulates tumor necrosis factor and interleukin–1 release from macrophages. FEBS Lett 247: 189–192CrossRefPubMedGoogle Scholar
  107. 107.
    Tomita T, Ezika M, Miwa M, Nakamura K, Inoue Y (1990) Rapid and reversible inhibition by low density lipoprotein of the endothelium-dependent relaxation to hemostatic substances in procine coronary arteries. Circ Res 58: 552–564Google Scholar
  108. 108.
    Vallance P, Leone A, Calver A, Collier J, Moneada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339: 573–575Google Scholar
  109. 109.
    Vandekerckhove F, Opdenakker G, Van’Ranst M, Lenaerts JP, Put W, Billiau A, Van’Damme J (1991) Bradykinin induces interleukin–6 and synergizes with interleukin–1. Lymphokine Cytokine Res 10: 285–289PubMedGoogle Scholar
  110. 110.
    Vanin AF (1991) Endothelium-derived relaxing factor is a nitrosyl iron complex with thiol ligands. FEBS Lett 289: 1–3CrossRefPubMedGoogle Scholar
  111. 111.
    Webb RC, Finta KM, Fisher M, Lee L, Pitt B (1992) Ramipril reverses impaired endothelium-dependent relaxation in arteries from rabbits fed an atherogenic diet (abstr). FASEB J 6: 3022Google Scholar
  112. 112.
    Wiemer G, Schölkens BA, Becker RHA, Busse R (1991) Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 18: 558–563PubMedGoogle Scholar
  113. 113.
    Winquist RJ, Bunting PB, Baskin EP, Wallace AA (1984) Decreased endothelium-dependent relaxations in New Zealand genetic hypertensive rats. J Hypertens 2: 541–545CrossRefPubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt 1994

Authors and Affiliations

  • J. Holtz
    • 1
  • R. M. Goetz
    • 1
  1. 1.Institut für PathophysiologieMartin-Luther-Universität Halle-WittenbergHalle-SaaleGermany

Personalised recommendations