Waves and wave drag in stratified flows

  • J. W. Miles
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

Waves in a stratified flow are a prominent and dramatic feature in the lee of a mountain range that stands athwart the prevailing winds, such as the Sierra Nevada in California or the Southern Alps in New Zealand. These waves produce striking cloud patterns, have been responsible for world records and fatal crashes in sailplanes, and may be responsible for a significant fraction of the momentum exchange between the Earth and its atmosphere. They are basically gravity waves, in the sense that they owe their existence to the buoyant force of gravity in a stably stratified fluid, and are excited by flow over an obstacle in such a fluid. Examples of wave-induced clouds on the lee sides of the southern Andes, the Sierra Nevada, and Mount Fujiyama are shown in Figs. 1–3, in inverse order of scaleThe first two patterns are quasi-two-dimensional, whereas the third (Fujiyama) is essentially three-dimensional. The first is of continental scale, in consequence of which the Coriolis force associated with rotation of the Earth might be a significant factor.

Keywords

Entropy Vortex Dust Convection Depression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, M. 1932: The formation of cloud by the obstruction of Mount Fuji. Geophys. Mag., Tokyo 6, 1.Google Scholar
  2. Abe, M. 1941: Mountain clouds, their forms and connected air currents. Part II. Bull. Central Met. Observ. of Japan 7, 93.Google Scholar
  3. Blumen, W. 1965a: A random model of momentum flux by mountain waves. Geofys. Publ. Norske Vid.-Acad. Oslo 26, No. 2.Google Scholar
  4. Blumen, W. 1965 b: Momentum flux by mountain waves in a stratified rotating atmosphere. J. Atmospheric Sci. 22, 529.ADSCrossRefGoogle Scholar
  5. Bretherton, F. P. 1967: The time-dependent motion due to a cylinder moving in an unbounded rotating or stratified flow. J. Fluid Mech. 28, 545.ADSCrossRefMATHGoogle Scholar
  6. Brunt, D. 1927: The period of simple vertical oscillations in the atmosphere. Quart. J. Roy. Meteor. Soc. 53, 30.ADSGoogle Scholar
  7. Claus, A. J. 1964: Large-amplitude motion of a compressible fluid in the atmosphere. J. Fluid Mech. 19, 267.MathSciNetADSCrossRefMATHGoogle Scholar
  8. Colson, D. 1952: Results of double-theodolite observations at Bishop. Bull. Amer. Meteor. Soc. 33, 107.Google Scholar
  9. Corby, G. 1954: The airflow over mountains. Quart. J. Roy. Meteor. Soc. 80, 491.ADSCrossRefGoogle Scholar
  10. Corby, G., and J. S. Sawyer 1958: The air flow over a ridge—the effects of the upper boundary and high-level conditions. Quart. J. Roy. Meteor. Soc. 84, 25.ADSCrossRefGoogle Scholar
  11. Corby, G., and J. S. Sawyer, and C. E. Wallington 1956: Airflow over mountains: the lee-wave amplitude. Quart. J. Roy. Meteor. Soc. 82, 266.ADSCrossRefGoogle Scholar
  12. Crapper, G. D. 1959: A three-dimensional solution for waves in the lee of mountains. J. Fluid Mech. 6, 51.MathSciNetADSCrossRefMATHGoogle Scholar
  13. Crapper, G. D. 1962: Waves in the lee of a mountain with elliptical contours. Phil. Trans., Roy. Soc. London (A) 254, 601.ADSCrossRefGoogle Scholar
  14. Doos, B. R. 1961: A mountain wave theory including the effect of the vertical variation of wind and stability. Tellus 13, 305.ADSCrossRefGoogle Scholar
  15. Drazin, P. G. 1961: On the steady flow of a fluid of variable density past an obstacle. Tellus 13, 239.ADSCrossRefGoogle Scholar
  16. Drazin, P. G., and D. W. Moore 1967: Steady two-dimensional flow of fluid of variable density over an obstacle. J. Fluid Mech. 28, 353.ADSCrossRefMATHGoogle Scholar
  17. Dubreil-Jacotin, M. L. 1937: Complément ä une Note antérieure sur les ondes de type permanent dans les liquides hétérogénes. Atti. Accad. Lincei, Rend, CI. Sci. Fis. Mat. Nat. 21, 344.Google Scholar
  18. Eckart, C. 1960: Hydrodynamics of Oceans and Atmospheres. New York: Pergamon Press.MATHGoogle Scholar
  19. Foldvik, A. 1968: Linearization of the equations governing stratified shear flow with applications to finite amplitude flow over a barrier. Geophysical Institute, University of Bergen.Google Scholar
  20. Foldvik, A., and M. G. Wurtele 1967: The computation of the transient gravity wave. J. R. astr. Soc. 13, 167.CrossRefGoogle Scholar
  21. Graham, E. W. 1966: The two-dimensional flow of an inviscid density-stratified liquid past a slender body. Boeing Scientific Research Laboratories Document Dl-83-0550, Flight Sciences Laboratory Report No. 108.Google Scholar
  22. Graham, E. W., and B. B. Graham 1966: Further notes on the two-dimensional flow of an inviscid densitystratified liquid past a slender body. Boeing Scientific Research Laboratories Document Dl-82-0591, Flight Sciences Laboratory Report No. 112.Google Scholar
  23. Graham, E. W., and B. B. Graham 1967 a: The effect of Froude number on the two-dimensional flow of an inviscid densitystratified liquid past a slender body. Boeing Scientific Research Laboratories Document Dl 82-0614, Flight Sciences Laboratory Report No. 114.Google Scholar
  24. Graham, E. W. 1967 b: The effect of a free surface on the two-dimensional flow of an inviscid density stratified liquid past a slender body. Boeing Scientific Research Laboratories Document Dl-82-0664, Flight Sciences Laboratory Report No. 121.Google Scholar
  25. Handelsman, R. A., and J. B. Keller 1967: Axially symmetric potential flow around a slender body. J. Fluid Mech. 28, 131.MathSciNetADSCrossRefMATHGoogle Scholar
  26. Hesselberg, T. 1929: Die Stabilitätsbeschleunigung in Meere und in der Atmosphäre. Hydrgr. u. marit. Meteorol. 57, 273.Google Scholar
  27. Hoiland, E. 1951: Fluid flow over a corrugated bed. (unpublished, but cited by Wurtele 1955; see also Holmboe and Klieforth 1957).Google Scholar
  28. Holmboe, J., and H. Klieforth 1957: Investigation of mountain lee waves and the air flow over the Sierra Nevada. Department of Meteorology, University of California, Los Angeles.Google Scholar
  29. Howard, L. N. 1961: Note on a paper of John W. Miles. J. Fluid Mech. 10, 509.Google Scholar
  30. Huppert, H. E., and J. W. Miles 1969: Lee waves in a stratified flow. Part 3. Semielliptical obstacle. J. Fluid Mech. 35, 481.ADSCrossRefMATHGoogle Scholar
  31. Jones, O. K. 1967: Some problems in the steady two-dimensional flow of an incompressible, inviscid and stably stratified fluid. Ph. D. Thesis, University of Bristol.Google Scholar
  32. Kao, T. W. 1965: The phenomenon of blocking in stratified flows. J. Geophys. Res. 70, 815.ADSCrossRefMATHGoogle Scholar
  33. Kelvin, Lord 1886, 1887: On stationary waves in flowing water. Phil. Mag. 22, 353, 445, 517; 23, 52; Mathematical and Physical Papers 4, 270.Google Scholar
  34. Kelvin, Lord 1904/5: On deep water ship waves. Proc. Roy. Soc. Edin., June 20, 1904; Phil. Mag. 9, 733; Papers 4, 368.Google Scholar
  35. Kelvin, Lord 1905/6: On deep sea ship waves. Proc. Roy. Soc. Edin., July 17, 1905; Phil. Mag. 11, 1; Papers 4, 394.Google Scholar
  36. Kozhevnikov, V. N. 1963: (cited by Kozhevnikov 1968).Google Scholar
  37. Kozhevnikov, V. N. 1968: Orographic perturbations in the two-dimensional stationary problem. Atmospheric and Oceanic Physics 4, 16–27.Google Scholar
  38. Küttner, J. 1939 a: Zur Enstehung der Föhn welle. Beitr. Phys. frei Atmos. 25, 251.Google Scholar
  39. Küttner, J. 1939 b: Moazagotl ud Föhn welle. Beitr. Phys. frei Atmos. 25, 79.Google Scholar
  40. Lamb, H. 1932: Hydrodynamics. Cambridge University Press.MATHGoogle Scholar
  41. Long, R. R. 1953 a: Some aspects of the flow of stratified fluids. I. A theoretical investigation. Tellus 5, 42.CrossRefGoogle Scholar
  42. Long, R. R. 1953b: Steady motion around asymmetrical obstacle moving along the axis of a rotating liquid. J. Meteor. 10, 197.CrossRefGoogle Scholar
  43. Long, R. R. 1953c: A laboratory model resembling the “Bishop Wave” phenomenon. Bull. Amer. Met.Soc. 34, 554.Google Scholar
  44. Long, R. R.1954: Some aspects of the flow of stratified fluids. II. Experiments with a two-fluid system. Tellus. 6, 97.Google Scholar
  45. Lokg, R. R. 1955: Some aspects of the flow of stratified fluids. III. Continuous density gradients. TeUus 7, 341.Google Scholar
  46. Lokg, R. R. 1956: Models of small-scale atmospheric phenomena involing density stratification. Fluid Models in Geophysics. U. S. Govt. Printing Office, 135.Google Scholar
  47. Lokg, R. R. 1958: Tractable models of steady-state stratified flow with shear. Quart. J. Roy. Meteor. Soc. 84, 159.ADSCrossRefGoogle Scholar
  48. Lokg, R. R. 1959: The motion of fluids with density statification. J. Geophys. Res. 64, 2151.ADSCrossRefGoogle Scholar
  49. Lokg, R. R. 1962: Velocity concentrations in stratified fluids. J. Hydraul. Div., Proc. ASCE 88, 9.Google Scholar
  50. Lyra, G. 1940: Über den Einfluß von Bodenerhebungen auf die Strömung einer stabil geschichteten Atmosphäre. Beitr. Phys. frei At mos. 26, 197.Google Scholar
  51. Lyra, G. 1943: Theorie der stationären Leewellenströmung in freier Atmosphäre. Z. angew. Math. Mech. 23, 1.MathSciNetCrossRefMATHGoogle Scholar
  52. Lyra, G. 1952: Bemerkungen über eine gewisse Klasse nicht-konstanter Anströmprofile beim Leewellenproblem. Beitr. Phys. Atmos. 31, 147.Google Scholar
  53. Manley, G. 1945: The heim wind of Crossfell, 1937–1939. Quart. J. Roy. Meteor. Soc. 71, 197.ADSCrossRefGoogle Scholar
  54. Merbt, H. 1959: Solution of the two-dimensional lee-wave equation for arbitrary mountain profiles, and some remarks on the horizontal wind component in mountain flow. Beitr. Phys. Atmos. 31, 152.MATHGoogle Scholar
  55. Milch, W. 1935: Über Reibung und Austausch infolge von Turbulenz in der Atmosphäre. Ann. Hydr. u. marit. Meteorol. 53, 613.Google Scholar
  56. Miles, J. W. 1961: On the stability of heterogeneous shear flow. J. Fluid Mech. 10, 496.MathSciNetADSCrossRefMATHGoogle Scholar
  57. Miles, J. W. 1968a: Lee waves in a stratified flow. Part 1. Thin barrier. J. Fluid Mech. 32, 549.ADSCrossRefMATHGoogle Scholar
  58. Miles, J. W. 1968b: Lee waves in a stratified flow. Part 2. Semi-circular obstacle. J. Fluid Mech. 33, 803.ADSCrossRefGoogle Scholar
  59. Miles, J. W. 1969: The lee-wave régime in a rotating flow. J. Fluid Mech. (in press).Google Scholar
  60. Miles, J. W., and H. E. Huppert 1969: Lee waves in a stratified flow. Part 4. Perturbation approximations. J. Fluid Mech. 35, 497.ADSCrossRefMATHGoogle Scholar
  61. Mintz, Y. 1954: The geostrophic poleward flux of angular momentum. Tellus 3, 195.ADSGoogle Scholar
  62. Münk, W. H., and G. J. F. Macdonald 1960: The rotation of the Earth. Cambridge University Press, 135.Google Scholar
  63. Muskhelishvili, N. I. 1953: Singular Integral Equations. Groningen: P. Noordhoff.Google Scholar
  64. Palm, E. 1953: On the formation of surface waves in a fluid flowing over a corrugated bed and on the development of mountain waves. Astrophys. Norveg. 5, 61.MathSciNetADSGoogle Scholar
  65. Palm, E. 1958a: Air flow over mountains: indeterminacy of solution. Quart. J. Roy. Meteor. Soc. 84, 464.ADSCrossRefGoogle Scholar
  66. Palm, E. 1958b: Two-dimensional and three-dimensional mountain waves. Geofys. Publ. 20, No. 3, 1.MathSciNetGoogle Scholar
  67. Palm, E., and A. Foldvik 1960: Contribution to the theory of two-dimensional mountain waves. Geofys. Publ. 21, No. 6, 1MathSciNetGoogle Scholar
  68. Pölya, G. 1947: A minimum problem about the motion of a solid through a fluid. Proc. Nat’L Acad. Sci. 33, 218.ADSCrossRefGoogle Scholar
  69. Qubnby, P. 1936: Recherches Relatives a Flnfluence du Relief sur les Eléments Météorologiques. La Météorologie, 334–53, 453–70.Google Scholar
  70. Qubnby, P. 1941: Ondes de gravité produites dans un courant aérien par une petite chaine de montagnes. Comptes Rendus de l’Académie des Sciences de Paris 213, 588.Google Scholar
  71. Qubnby, P. 1947: Theory of Perturbations in Stratified Currents with Application to Airflow over Mountain Barriers. Department of Meteorology, University of Chicago, Misc. Report No. 23.Google Scholar
  72. Qubnby, P. 1948: The problem of air flow over mountains: a summary of theoretical studies. Bull. Am. Meteor. Soc., 29, 16.Google Scholar
  73. Qubnby, P. 1955: Rotor phenomena in the lee of mountains. Tellus 7, 367.ADSCrossRefGoogle Scholar
  74. Qubnby, P., and G. Corby, N. Gerbier, H. Koschmieder and J. zierep 1960: The Airflow over Mountains. Geneva: World Meteorological Organization, Tech. Note 34.Google Scholar
  75. Rayleigh, Lord 1883: The form of standing waves on the surfaces of running water. Proc. Lond. Math. Soc. 15, 69; Scientific Papers 2, 258.MathSciNetCrossRefGoogle Scholar
  76. Rayleigh, Lord 1897: On the incidence of aerial and electric waves upon small obstacles. Phil. Mag. 44, 28; Scientific Papers 4, 305.CrossRefMATHGoogle Scholar
  77. Rayleigh, Lord 1916: On the dynamics of revolving fluids. Proc. Roy. Soc. London (A) 93, 148.ADSCrossRefGoogle Scholar
  78. Roijse, H., and S. Ince 1957: History of Hydraulics. State University of Iowa.Google Scholar
  79. Russell, J. S. 1840: Experimental researches into the laws of certain hydrodynamical phenomena that accompany the motion of floating bodies, and have not previously reduced into conformity with the known laws of the resistance of fluids. Trans. Roy. Soc. Edin. 19, 79.Google Scholar
  80. Russell, J. S. 1844: Report on waves. British Association Report, 311.Google Scholar
  81. Sawyer, J. S. 1959: The introduction of the effects of topography into methods of numerical forecasting. Quart. J. Roy. Meteor. Soc. 85, 31.ADSCrossRefGoogle Scholar
  82. Sawyer, J. S. 1960: Numerical calculation of the displacements of a stratified airstream crossing a ridge of small height. Quart. J. Roy. Meteor. Soc. 86, 326.ADSCrossRefGoogle Scholar
  83. Schooley, A. H., and R. W. Stewart 1963: Experiments with a self-propelled body submerged in a fluid with a vertical density gradient. J. Fluid Mech. 15, 83.Google Scholar
  84. Scorer, R. S. 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc. 76, 41.ADSCrossRefGoogle Scholar
  85. Scorer, R. S. 1953: Theory of airflow over mountains: II. The flow over a ridge. Quart. J. Roy. Meteor. Soc. 79, 70.ADSCrossRefGoogle Scholar
  86. Scorer, R. S. 1954: Theory of airflow over mountains: III. Airstream characteristics. Quart. J. Roy. Meteor. Soc. 80, 417.ADSCrossRefGoogle Scholar
  87. Scorer, R. S. 1955a: Theory of airflow over mountains: IV. Separation of flow from the surface. Quart. J. Roy. Meteor. Soc. 81, 340.ADSCrossRefGoogle Scholar
  88. Scorer, R. S. 1955 b: Theory of non-horizontal adiabatic flow in the atmosphere. Quart. J. Roy. Meteor. Soc. 81, 551.ADSCrossRefGoogle Scholar
  89. Scorer, R. S. 1956: Airflow over an isolated hül. Quart. J. Roy. Meteor. Soc. 82, 75.ADSCrossRefGoogle Scholar
  90. Scorer, R. S. 1958: Reply to Palm (1958a). Quart. J. Roy. Meteor. Soc. 84, 465.ADSCrossRefGoogle Scholar
  91. Scorer, R. S., and H. Klieforth 1959: Theory of mountain wave 3 of large amplitude. Quart. J. Roy. Meteor. Soc. 85, 131.ADSCrossRefGoogle Scholar
  92. Scorer, R. S., and H. Klieforth, and H. Klieforth, and M. Wilkinson 1956: Waves in the lee of an isolated hill. Quart, J. Roy. Meteor. Soc. 82, 419.ADSCrossRefGoogle Scholar
  93. Scorer, R. S., and H. Klieforth, and H. Klieforth, and M. Wilkinson, and S. D. R. Wilson 1963: Secondary instability in steady gravity waves. Quart. J. Roy. Meteor. Soc. 89, 532.ADSCrossRefGoogle Scholar
  94. Sokhov, T. Z., and L. N. Gutman 1968: The use of the long-wave method in the nonlinear problem of the motion of a cold air mass over a mountain ridge. Atmospheric and Oceanic Physics 4, 11–16.Google Scholar
  95. Stoker, J. J. 1953: Unsteady waves on a running stream. Commun. Pure. Appl. Math. 6, 471.MathSciNetCrossRefMATHGoogle Scholar
  96. Trustrum, Kathleen 1964: Rotating and stratified fluid flow. J. Fluid Mech. 19, 415.Google Scholar
  97. Väisälä, V. 1925: Über die Wirkung der Windschwankungen auf die Pilotbeobachtungen. Soc. Scient. Fennica, Comm. Phys-Math II 19, 1.Google Scholar
  98. Wallington, C. E., and J. Portnall 1958: A numerical study of wavelength and amplitude of lee waves. Quart. J. Roy. Meteor. Soc. 84, 38.ADSCrossRefGoogle Scholar
  99. Warren, F. W. G. 1960: Wave resistance to vertical, motion in a stratified fluid. J. Fluid Mech. 7, 209MathSciNetADSCrossRefMATHGoogle Scholar
  100. Warren, F. W. G. 1961: The generation of wave energy at a fluid interface by the passage of a vertically moving slender body. Quart. J. Roy. Meteor. Soc. 87, 43.ADSCrossRefGoogle Scholar
  101. Wurtele, M. G. 1953: Studies of lee waves in atomospheric models with continuously distributed static stability [unpublished; see Queney et al. (1960) for summary].Google Scholar
  102. Wurtele, M. G. 1955: The transient development of a lee wave. J. Marine Res. 14, 1.Google Scholar
  103. Wurtele, M. G. 1957: The three-dimensional lee wave. Beitr. Phys. Atmos. 29, 242.MATHGoogle Scholar
  104. Yih, C.-S. 1959: Effect of density variation on fluid flow. J. Geophys. Res. 64, 2219.ADSCrossRefGoogle Scholar
  105. Yih, C.-S. 1965: Dynamics of Nonhomogeneous Fluids. New York: Macmillan.MATHGoogle Scholar
  106. Zierep, J. 1952: Leewellen bei geschichteter Anströmung. Berichte Deutsch. Wetterdien 35, 85.Google Scholar
  107. Zierep, J. 1953: Bestimmung der Leewellenströmung bei beliebigem Anströmprofil. Z. Flugwiss. 1, 9.MATHGoogle Scholar
  108. Zierep, J. 1956: Das Verhalten der Leewellen in der Stratosphäre. Beitr. Phys. Atmos. 29, 1.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • J. W. Miles
    • 1
  1. 1.University of CaliforniaLa JollaUSA

Personalised recommendations