Stability analysis of branching solutions of the Navier-Stokes equations

  • K. Kirchgässner
  • P. Sorger
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


This paper describes a method for the investigation of some properties of branching solutions of the Navier-Stokes boundary-value problem. Questions arising in this context are closely connected to problems in hydrodynamic stability. Many of the nonlinear aspects of this theory have been investigated thoroughly (cf. J. T. Stuart [11]). However, it was only in recent times that a mathematically rigorous basis was layed for these results, beginning with the use of topological methods by Velte [13] and Iudovich [3] and the application of the method of Schmidt-Lyapunov by kirchGässner [7] and Iudovich [4].


Couette Flow Unique Minimum Steady Solution Simple Eigenvalue Hydrodynamic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability, Oxford (1961).MATHGoogle Scholar
  2. 2.
    Görtler, H., K. Kirchgässner and P. Sorger: Branching solutions of the Bénard problem, (1967), to appear in Problems of Hydrodynamic and Continuum Mechanics, dedicated to L. I. Sedov.Google Scholar
  3. 3.
    Iudovich, V. I.: O vozniknovenii konvektsii (On the origin of convection), PMM 30, No. 6. (1966).MathSciNetGoogle Scholar
  4. 4a.
    Iudovich, V. I.: Svobodnaia Konvektsila i vetvlenie (Free convection and bifurcation), PMM 31, No. 1. (1966).Google Scholar
  5. 4b.
    Iudovich, V. I.: Ustoichivost’ Konvektsionnykh potokov (Stabüity of convection flows), PMM 31, No. 2 (1967).Google Scholar
  6. 5.
    Kato, T.: Perturbation theory for linear operators, Berlin/Heidelberg/New York: Springer 1966.CrossRefMATHGoogle Scholar
  7. 6.
    Kieohgässner, K.: Die Instabilität der Strömung zwischen zwei rotierenden Zylindern gegenüber Taylor-Wirbeln für beliebige Spaltbreiten. ZAMP 12 (1961).Google Scholar
  8. 7.
    Kieohgässner, K.:Verzweigungslösungen eines stationären hydrodynamischen Randwertproblems, Habilitation, Freiburg, 1966.Google Scholar
  9. 8.
    Kieohgässner, K.:, and P. Sorger: Branching analysis for the Taylor problem, to appear in Quart. J. Mech. Appl. Math. (1969).Google Scholar
  10. 9.
    Ladyshenskaja, O.A.: Funktionalanalytische Untersuchungen der Navier-Stokesschen Gleichungen, Berlin 1965.MATHGoogle Scholar
  11. 10.
    Prodi, G.: Teoremi di tipo locale, per il sistema di Navier-Stokes e stabüita delle soluzioni stazionarie. Rend. Sem. Mat. Univ. Padova 32 (1962).Google Scholar
  12. 11.
    Davey, a., R. C. di Prima and J. T. Stuart: On the instability of Taylor vortices, J. Fluid Mech. 31 (1968).Google Scholar
  13. 12.
    Vainberg, M. M., and V. A. Trenogin: The methods of Lyapunov and Schmidt in the theory of non-linear equations, and their further development, Russ. Math. Surv. 17, 1–60 (1962).MathSciNetCrossRefMATHGoogle Scholar
  14. 13.
    Velte, W.: Stabilität und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen beim Taylorproblem, Arch. Rat. Mech. Anal. 22, 1–14 (1966).MathSciNetCrossRefMATHGoogle Scholar
  15. 14.
    Yosida, K.: Functional analysis, Berlin/Heidelberg/New York: Springer 1965.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • K. Kirchgässner
    • 1
  • P. Sorger
    • 1
  1. 1.Institut für Angewandte Mathematik und Mechanik der DVLRFreiburgGermany

Personalised recommendations