Skip to main content

Similarity properties of the laminar or turbulent separation phenomena in a non-uniform supersonic flow

  • Conference paper

Abstract

A detailed and systematic experimental analysis of the separation phenomena in a plane and uniform supersonic flow, clearly emphasizing the influence of the laminar, turbulent or transitional nature of the boundary layer, has been presented first by Chapman, Kuehn, and Larson [1]. It has led these authors to point out a theoretical approach based on the existence of similarity properties in the development of the boundary layer around the separation point. This very simple method, applicable to laminar as well as turbulent flow, leads to a rather complete description of separation. It is particularly well adapted to practical applications, and has been used in that way by Erdos and Pallone [2]. More recently Lewis, Kubota, and Lees [3] have considered an extension of Chapman’s work to the case of uniform and nonadiabatic hypersonic flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

C f :

Wall friction coefficient

D :

Nozzle-throat diameter

D z :

Nozzle-out diameter

f 1 :

Similitude function; Eqs. (3) and (15)

f 2 :

Similitude function; Eqs. (6) and (15)

F :

Pressure correlation function; Eqs. (7) and (16)

g :

\( = F/\tilde F\)

h :

\( = K/\tilde K\)

k :

=(l *0 )/[F R /(θ R — θ R )]; Eq. (8)

K :

=k · F R ; Eq.(8)

l :

Reference length; l = xx 0

M :

Mach number

p :

Pressure

p i :

Stagnation pressure

p′:

Non-dimensional pressure gradient = \(\frac{{\delta _0^*}}{{{q_0}}}\cdot\frac{{\partial p}}{{\partial x}}\)

P :

Büsemann pressure number P(M) = \(\int { - \frac{1}{M}\cdot\frac{{\sqrt {{M^2} - 1} }}{{1 + \frac{{\gamma - 1}}{2}{M^2}}}} \)

q :

Dynamic pressure = \(\frac{1}{2}P\gamma {M^2}\)

R :

Nozzle longitudinal radius

Re:

Reynolds number

s :

Reduced abcissa = \(\frac{{x - {x_0}}}{l}\)

T :

Temperature

u :

0x velocity component

v :

0y velocity eomponent

0x :

Reference axis (see section 3.1)

X :

Nozzle axis

0y :

Axis normal to X

Y :

Radial distance of a point in the flow

α :

Mach angle

γ :

Specific-heat ratio

δ*:

Displacement thickness of the boundary layer

η, ξ :

Characteristic coordinates

θ :

Velocity inclination

\(\bar \omega \)(M):

Function p/P i (M) (isentropic flow)

03F1; :

Specific mass

τ :

Shear stress

0:

at origin of interaction

R :

at selected value of the F function

S :

at separation point

W :

at wall

~:

Case of uniform adiabatic flow

—:

Case of non-separated flow

References

  1. Chapman, D. R., D. M. Kuehn and H. K. Larson: Investigation of separated flows in supersonic and subsonic streams with emphazis on the effect of transition. NACA-TR 1356 (1968).

    Google Scholar 

  2. Erdos, J., and A. Pallone: Shock boundary layer interaction and flow separation. R.A.D. — TR 61–23, AVCO Corp., Aug. 15 (1961).

    Google Scholar 

  3. Lewis, J. E., T. Kubota and L. Lees: Experimental investigation of supersonic laminar, two- dimensional boundary layer separation in a compression corner with and without cooling. AIAA J. 6, 7–14 (1968).

    Article  ADS  Google Scholar 

  4. Carriere, P.: Recherches sur les décoUements dans les tuyères propulsives. Rev. roumaine des Sciences Techniques — Mécanique appliquée. Tome 13, No. 3 (1968) p. 339–415.

    Google Scholar 

  5. Michel, R.: Cours del’ Ecole Nationale Supérieure de l’Aéronautique. Paris 1967.

    Google Scholar 

  6. Curle, N.: The effect of heat transfer on laminar boundary layer separation in supersonic flow. Aero. Quart. 12, 309–336 (1961).

    Google Scholar 

  7. Herbert, M. V., and R.J. Herdt: Boundary layer separation in supersonic propelling nozzles, in the presence of external flow. NGTE, Report 260, Aug. 1964.

    Google Scholar 

  8. Carriere, P.: Exhaust nozzles. In AGARD Lecture Series on supersonic Turbomachinery. Varenne (Italy), May 1967 (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carrière, P., Sirieix, M., Solignac, JL. (1969). Similarity properties of the laminar or turbulent separation phenomena in a non-uniform supersonic flow. In: Hetényi, M., Vincenti, W.G. (eds) Applied Mechanics. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85640-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85640-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85642-6

  • Online ISBN: 978-3-642-85640-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics