The Study of Pharmacokinetics and Pharmacodynamics as a Tool for Understanding Mechanisms of Antiarrhythmic Drug Action

  • D. M. Roden


Antiarrhythmic drugs have relatively narrow margins between the dosages required to produce efficacy and those which are associated with toxicity. Thus, a clear understanding of the mechanisms which determine drug delivery to active site(s) of action, as well as how drugs interact with target molecules at those site(s), may be an important tool to understand variability in response to antiarrhythmic drug therapy. Such understanding, in turn, may lead to an improved ability to predict patients at risk for serious adverse events, as well as to adjust doses to maximize efficacy.


Sodium Channel Antiarrhythmic Drug Plasma Drug Concentration Antiarrhythmic Therapy Cardiac Sodium Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alderman EL, Kerber RE, Harrison DC (1974) Evaluation of lidocaine resistance in man using intermittent large-dose infusion techniques. Am J Cardiol 34: 342–347PubMedCrossRefGoogle Scholar
  2. Bandyopadhyay S, Mashburn C, Tamkun M, Roden D (1992) Modulation of cardiac K+ channel mRNA transcript level and electrocardiographic effect by hpyertension. Circulation 86: 1–77 (abstract)CrossRefGoogle Scholar
  3. Beckmann J, Hertrampf R, Gundert-Remy U, Mikus G, Gross AS, Eichelbaum M (1988) Is there a genetic factor in flecainide toxicity? Br Med J 297: 1316–1317CrossRefGoogle Scholar
  4. Bennett PB, Woosley RL, Hondeghem LM (1988) Competitive interactions oflidocaine (L) and one of its metabolites, glycine xylidide ( GX), with cardiac sodium channels. Circulation 78: 692–700Google Scholar
  5. Beuckelmann DJ, Nabauer M, Erdmann E (1993) Alterations of K+ currents in isolatedhuman ventricular myocytes from patients with terminal heart failure. Circ Res 73: 379–385PubMedCrossRefGoogle Scholar
  6. Brodie BB, Udenfriend S (1943) Estimation of quinine in human plasma, with note on estima-tion of quinidine. J Pharmacol Exp Ther 78: 154Google Scholar
  7. Chouty F, Funck-Brentano C, Landau JM, Lardoux H (1987) Efficacité de fortes doses de lactate molaire par voie veineuse lors des intoxications au flecainide. Press Med 16: 808–810Google Scholar
  8. Chow MJ, Piergies AA, Bowsher DJ, Murphy JJ, Kushner W, Ruo TI, Asada A, Talano JV, Atkinson AJ (1984) Torsade de pointes induced by N-acetylprocainamide. J Am Coll Cardiol 4: 621–624PubMedCrossRefGoogle Scholar
  9. Duff HJ, Offord J, West J, Catterall WA (1992) Class I and IV antiarrhythmic drugs and cytosolic calcium regulate mRNA encoding the sodium channel alpha subunit in rat cardiac muscle. Mol Pharm 42: 570–574Google Scholar
  10. Dusman RE, Stanton MS, Miles WM, Klein LS, Zipes DP, Fineberg NS, Heger JJ (1990) Clinical features of amiodarone-induced pulmonary toxicity. Circulation 82: 51–59PubMedCrossRefGoogle Scholar
  11. Echizen H, Vogelgesang B, Eichelbaum M (1985) Effects of d,l-verapamil on atrioventricular conduction in relation to its stereoselective first-pass metabolism. Clin Pharmacol Ther 38: 71–76PubMedCrossRefGoogle Scholar
  12. Echt DS, Lee JT, Murray KT, Vorperian V, Borganelli SM, Crawford DM, Roden DM (1991) A randomized, double-blind, placebo-controlled dose-ranging study of intravenous UK-68,798 (dofetilide) in patients with inducible sustained ventricular tachyarrhythmias. Circulation 84: I1–714 (abstract)CrossRefGoogle Scholar
  13. Eichelbaum M, Gross AS (1990) The genetic polymorphism of debrisoquine/sparteine metabolism-clinical aspects. Pharmacol Ther 46 377–394PubMedCrossRefGoogle Scholar
  14. Eichelbaum M, Mikus G, Vogelgesang B (1984) Pharmacokinetics of (+)-, (-)- and (±)verapamil after intravenous administration. Br J Clin Pharmaco117: 453–458CrossRefGoogle Scholar
  15. Evers J, Eichelbaum M, Kroemer HK (1994) Unpredictability of flecainide plasma concentrations in patients with renal failure: relation to side effects and sudden death? Ther Drug Monit 16: 349–351PubMedCrossRefGoogle Scholar
  16. Funck-Brentano C, Kroemer HK, Pavlou H, Woosley RL, Roden DM (1989a) Genetically-determined interaction between propafenone and low dose quinidine: role of active metabolites in modulating net drug effect. Br J Clin Pharmacol 27: 435–444PubMedCrossRefGoogle Scholar
  17. Funck-Brentano C, Light RT, Lineberry MD, Wright GM, Roden DM, Woosley RL (1989 b) Pharmacokinetic and pharmacodynamic interaction of N-acetylprocainamide and procainamide in humans. J Cardiovsc Pharmaco114:364–373CrossRefGoogle Scholar
  18. Funck-Brentano C, Kroemer HK, Lee JT, Roden DM (1990) Propafenone. N Engl J Med 322: 518–525CrossRefGoogle Scholar
  19. Guentert TW, Upton RA, Holford NHG, Riegelman S (1979) Divergence in pharmacokinetic parameters of quinidine obtained by specific and nonspecific assay methods. J Pharmacokinet Biopharm 7: 303–311PubMedGoogle Scholar
  20. Haverkamp W, Hördt M, Chen X, Willems S, Brunn J, Rotman B, Borggrefe M (1993) Torsades de Pointes induced by d,l-sotalol. Circulation 88:SI-397 (abstract)Google Scholar
  21. Hohnloser SH, Arendts W, Quart B, Bristol Myers Squibb Research Institute (1992) Incidence, type, and dose-dependence of proarrhythmic events during sotalol therapy in patients treated for sustained VT/VF. PACE 15: 551CrossRefGoogle Scholar
  22. Jackman WM,Friday KJ, Anderson JL (1988) The long QT syndromes: a critical review, new clinical observations and a unifying hypothesis. Prog Cardiovasc Dis 31: 115–172PubMedCrossRefGoogle Scholar
  23. Kessler KM, Kissane B, Cassidy J, Pefkaros KC, Kozlovskis P, Hamburg C, Myerburg RJ (1984) Dynamic variability of binding of antiarrhythmic drugs during the evolution of acute myocardial infarction. Circulation 70: 472–478PubMedCrossRefGoogle Scholar
  24. Kessler KM, Wozniak PM, McAuliffe D, Terracall E, Kozlovskis P, Mahmood I, Zaman L, Trohman RG, Castellanos A, Myerburg RJ (1989) The clinical implication of changing unbound quinidine levels. Am Heart J 118: 63–69PubMedCrossRefGoogle Scholar
  25. Kroemer HK, Fischer C, Meese CO, Eichelbaum M (1991) Enantiomer/enantiomer interaction of (S)- and (R)-propafenone for cytochrome P45oIID6 catalyzed 5-hydroxylation: in vitro evaluation of the mechanism. Mol Pharmacol 40: 135–142PubMedGoogle Scholar
  26. Kroemer HK, Fromm MF; Bühl K, Terefe H, Blaschke G, Eichelbaum M (1994) An enantiomer/enantiomer interaction of [SI- and [RI-propafenone modifies the effect of racemic drug therapy. Circulation 89: 2396–2400PubMedCrossRefGoogle Scholar
  27. Lee JT, Kroemer HK, Silberstein DJ, Funck-Brentano C, Lineberry MD, Wood AJ, Roden DM, Woosley RL (1990) The role of genetically determined polymorphic drug metabolism in the beta-blockade produced by propafenone. N Engl J Med 322: 1764–1768PubMedCrossRefGoogle Scholar
  28. Lue W, Boyden P (1992) Abnormal electrical properties of myocytes from chronically infarcted canine heart. Circulation 85: 1175–1188PubMedCrossRefGoogle Scholar
  29. Matsubara H, Suzuki J, Inada M (1993) Shaker-related potassium channel, Kv1.4, mRNA regulation in cultured rat heart myocytes and differential expression of Kv1.4 and Kv1.5 genes in myocardial development and hypertrophy. J Clin Invest 92: 1659–1666PubMedCrossRefGoogle Scholar
  30. Mikus G, Gross AS, Beckmann J, Hertrampf R, Gundert-Remy U, Eichelbaum M (1989) The influence of the spateine/debrisoquine phenotype on the disposition of flecainide. Clin Pharmacol Ther 45: 562–567PubMedCrossRefGoogle Scholar
  31. Morganroth J, Horowitz LN (1984) Flecainide: its proarrhythmic effect and expected changes on the surface electrocardiogram. Am J Cardiol 53: 89B - 94BCrossRefGoogle Scholar
  32. Morganroth J, Anderson JL, Gentzkow GD (1986) Classification by type of ventricular arrhythmia predicts frequency of adverse cardiac events from flecainide. J Am Coll Cardiol 8: 607–615PubMedCrossRefGoogle Scholar
  33. Mörike KE, Roden DM (1994) Quinidine-enhanced beta-blockade during treatment with propafenone in extensive metabolizer human subjects. Clin Pharmacol Ther 55: 28–34PubMedCrossRefGoogle Scholar
  34. Müller N, Brockmöller J, Roots I (1991) Extremely long plasma half-life of amitriptyline in a woman with the cytochrome P45oIID6 29/29-kilobase wild-type allele-a slowly reversible interaction with fluoxetine. Ther Drug Monit 13: 533–536PubMedCrossRefGoogle Scholar
  35. Nattel S, Pedersen DH, Zipes DP (1981) Alterations in regional myocardial distribution and arrhythmogenic effects of aprindine produced by coronary artery occlusion in the dog. Cardiovasc Res 15:80–85Google Scholar
  36. Oetgen WJ, Tibbits PA, Abt MEO, Goldstein RE (1983) Clinical and electrophysiologic assessment of oral flecainide acetate for recurrent ventricular tachycardia: evidence for exacerbation of electrical instability. Am J Cardiol 52: 746–750PubMedCrossRefGoogle Scholar
  37. Offord J, Catterall WA (1989) Electrical activity, cAMP, and cytosolic calcium regulate mRNA encoding sodium channel a subunits in rat muscle cells. Neuron 2: 1447–1452PubMedCrossRefGoogle Scholar
  38. Olshansky B, Martins J, Hunt S (1982) N-acetylprocainamide causing Torsades de Pointes. Am J Cardiol 50: 1439PubMedCrossRefGoogle Scholar
  39. Roberds SL, Knoth KM, Po S, Blair TA, Bennett PB, Hartshorne RP, Snyders DJ, Tamkun MM (1993) Molecular biology of the voltage-gated potassium channels of the cardiovascular system. J Cardiovasc Electrophysiol 4: 68–80PubMedCrossRefGoogle Scholar
  40. Roden DM (1992) Treatment of cardiovascular disorders: arrhythmias. In: Melmon KL, Morrelli HF, Hoffman BB, Nierenberg DW (eds) Clinical pharmacology: basic principles in therapeutics. McGraw-Hill, New York, pp 151–185Google Scholar
  41. Roden DM (1993a) Sotalol for patients with life-threatening ventricular arrhythmias. Am J Cardiol 72: 51A - 55APubMedCrossRefGoogle Scholar
  42. Roden DM (1993 b) Current status of class III antiarrhythmic therapy. Am J Cardiol 72:44B–49BPubMedCrossRefGoogle Scholar
  43. Roden DM, Murray KT (1994) Pharmacokinetics, pharmacodynamics and pharmacogenetics.Google Scholar
  44. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology. Saunders, PhiladelphiaGoogle Scholar
  45. Roden DM, DM, Tamkun MM (1994) Toward a molecular view of cardiac arrhythmogenesis.Google Scholar
  46. Trends Cardiovasc Med 4:278–285Google Scholar
  47. Roden DM, Reele SB, Higgins SB, Mayol RF, Gammans RE, Oates JA, Woosley RL (1980) Total suppression of ventricular arrhythmias by encainide. Pharmacokinetic and electrocardiographic characteristics. N Engl J Med 302: 877–882Google Scholar
  48. Roden DM, Woosley RL, Primm RK (1986) Incidence and clinical features of the quinidine- associated long QT syndrome: implications for patient care. Am Heart J 111: 1088–1093PubMedCrossRefGoogle Scholar
  49. Sherman SJ, Catterall WA (1984) Electrical activity and cytosolic calcium regulate levels of tetrodotoxin-sensitive sodium channels in cultured rat muscle cells. Proc Natl Acad Sci USA 81: 262–266PubMedCrossRefGoogle Scholar
  50. Siddoway LA, Thompson KA, McAllister CB, Wang T, Wilkinson GR, Roden DM, Woosley RL (1987) Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation 75: 785–791PubMedCrossRefGoogle Scholar
  51. Suzuki T, Fujita S, Kawai R (1984) Precursor-metabolite interaction in the metabolism of lidocaine. J Pharm Sci 73: 136–138PubMedCrossRefGoogle Scholar
  52. Thompson KA, Blair IA, Woosley RL, Roden DM (1987) Comparative in vitro electrophysiology of quinidine, its major metabolites and dihydroquinidine. J Pharmacol Exp Ther 241: 84–90PubMedGoogle Scholar
  53. Thompson KA, Murray JJ, Blair IA, Woosley RL, Roden DM (1988) Plasma concentrations of quinidine, its major metabolites, and dihydroquinidine in patients with torsades de pointes. Clin Pharmacol Ther 43: 636–642PubMedCrossRefGoogle Scholar
  54. Turgeon J, Murray KT, Roden DM (199oa) Effects of drug metabolism, metabolits, and stereoselectivity on antiarrhythmic drug action. J Cardiovasc Electrophysiol 1: 238–260Google Scholar
  55. Turgeon J, Pavlou HN, Wong W, Funck-Brentano C, Roden DM (1990b) Genetically determined steady-state interaction between encainide and quinidine in patients with arrhythmias. J Pharmacol Exp Ther 255: 642–649PubMedGoogle Scholar
  56. Vogelgesang B, Echizen H, Schmidt E, Eichelbaum M (1984) Stereoselective first-pass metabolism of highly cleared drugs: studies of the bioavailability of L- and D-verapamil examined with a stable isotope technique. Br J Clin Pharmaco118: 733–740Google Scholar
  57. Wetherbee DG, Holzman D, Brown MG (1951) Ventricular tachycardia following the administration of quinidine. Am Heart J 42: 89–96Google Scholar
  58. Winkelmann BR, Leinberger H (1987) Life-threatening flecainide toxicity: a pharmacodynamic approach. Ann Intern Med 106: 807–814PubMedGoogle Scholar
  59. Winkle RA, Mason JW, Griffin JC, Ross D (1981) Malignant ventricular tachyarrhythmias associated with the use of encainide. Am Heart J 102: 857–864PubMedCrossRefGoogle Scholar
  60. Woosley RL, Wood AJ, Roden DM (1988) Drug therapy. Encainide. N Engl J Med 318:1107–1115 Woosley RL, Chen Y, Freiman JP, Gillis RA (1993) Mechanism of the cardiotoxic actions of terfenadine. JAMA 269: 1532–1536Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • D. M. Roden

There are no affiliations available

Personalised recommendations