Soil Flora: Studies of the Number and Activity of Microorganisms in Woodland Soils

  • L. Steubing
Part of the Ecological Studies book series (ECOLSTUD, volume 1)


Litter fall is of great importance in the nutrient cycle of forest ecosystems. Microbes attack and transform this organic material which is accumulated on and in the soil. There have been a number of investigations on the decomposition of litter in woodlands. It is obvious that the destruction of organic substances depends upon the number, species and activity of soil microflora and fauna. In investigating the role of soil microflora two approaches have been used: counting and isolating soil microorganisms or determining microbial induced biochemical effects in the soil.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, M.: Introduction to soil microbiology. New York-London-Sidney: Wiley & Sons 1967.Google Scholar
  2. Alexander, F. E., and R. M. Jackson: Examination of soil microorganisms in their natural environment. Nature 174, 750–751 (1954).CrossRefGoogle Scholar
  3. Beck, Th.: Mikrobiologie des Bodens. München-Basel-Wien: Bayrischer Landw. Verlg. 1968.Google Scholar
  4. Black, W. A. P.: The seasonal variation in the cellulose content of the common Scottish Laminariaceae and Fucaceae. J. Mar. Biol. Assoc. U. Kingd. 29, 379–387 (1950).CrossRefGoogle Scholar
  5. Brink, R. H., P. Dubach, and D. L. Lynch: Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci. 89, 157 (1960).CrossRefGoogle Scholar
  6. Cholodny, N.: Eine neue Methode zur Untersuchung der Bodenmikroflora. Arch. Mikrobiol. 1, 620–652 (1930).CrossRefGoogle Scholar
  7. Flaig, W.: The chemistry of humic substances. In: The use of isotopic in soil organic matter studies. Report of the FAO/LAEA technical meeting Bruns wick- Volkenrode Sept. 1963. New York: Pergamon Press 1966.Google Scholar
  8. Gams, W.: Isolierung von Hyphen aus dem Boden. Sydowia. Ann. Mycol. II, 13, 87–94 (1959).Google Scholar
  9. Gilbert, R. G., and J. Altman: Ethanol extraction of free amino acids from soil. Plant and Soil 24, 229–238 (1966).CrossRefGoogle Scholar
  10. Gilman, J. C.: A manual of soil fungi. Ames: Iowa State Coll. Press 1957.Google Scholar
  11. Glathe, H.: Die Mikroorganismen des Bodens und ihre Bedeutung, pp. 551–649. In: Handb. d. Pflanzenern. u. Düng. II, Teil 1 (Linser, H., Ed.). New York-Berlin: Springer 1966.Google Scholar
  12. Gorham, E., and J. Sanger: Plant pigments in woodland soils. Ecology 48, 306–308 (1967).CrossRefGoogle Scholar
  13. Haider, K., S. Lim u. W. Flaig: Experimente und Theorien über den Ligninabbau bei der Weißfäule des Holzes und bei der Verrottung pflanzlicher Substanz im Boden. Holzforschung 18, 81–88 (1964).CrossRefGoogle Scholar
  14. Haider, K., and C. Schetters: Mesophile ligninabbauende Pilze in Ackerböden und ihr Einfluß auf die Bildung von Humusstoffen, pp. 425–439. In: Progress in soil biology (Graff, O., and J. E. Satchell, Eds.) Braunschweig: Vieweg & Sohn 1967.Google Scholar
  15. Henderson, M. E. K.: Studies on the physiology of Lignin decomposition by soil fungi, pp. 286–296. In: The ecology of soil fungi (Parkinson, D., and J. S. Waid, Eds.). Liverpool University Press 1960.Google Scholar
  16. Imschenezki, A. A.: Mikrobiologie der Cellulose. Berlin: Akademie Verlag 1959.Google Scholar
  17. Janke, A.: Arbeitsmethoden der Mikrobiologie. Dresden-Leipzig: Steinkopf 1946.Google Scholar
  18. Johnson, L. F., E. A. Curl, J. H. Bond, and H. A. Fribourg: Methods for studying soil microflora-plant disease relationships. Minneapolis: Burgess Publ. Co. 1960.Google Scholar
  19. Jones, P. C. T., and J. E. Mollison: A technique for the quantitative estimation of soil microorganisms. J. Gen. Microbiol. 2, 54–69 (1948).CrossRefGoogle Scholar
  20. Kerr, A.: The use of cellophane in growth studies on soil fungi. Trans. Brit. Mycol. Soc. 41, 14–16 (1958).CrossRefGoogle Scholar
  21. Kunze, C.: Die Identifizierung von Ligninspaltstiicken anhand von Papier- und Dünnschichtchromatographie. Experientia 24, 844–845 (1968).CrossRefGoogle Scholar
  22. Kunze, C.: Die biologische Aktivität von Bodenproben, gemessen an der CO2-Abgabe und dem Vanillin-Abbau (in press).Google Scholar
  23. Maeder, H.: Chemische und pflanzenphysiologische Untersuchungen in Rottestroh. Diss., Univ. Gießen, 1960.Google Scholar
  24. Meister, A.: Biochemistry of the amino acids. New York-London: Academic Press 1965.Google Scholar
  25. Mischustin, E., and A. Petrowa: Bestimmung der biologischen Aktivität der Böden. Mikrobiol. 32, 479 (1963).Google Scholar
  26. Ovington, J. D.: Quantitative ecology and the woodland ecosystem concept, pp. 103–192. In: Advances in ecological research. (J. B. Cragg, Ed.): London-New York: Academic Press 1962.Google Scholar
  27. Paul, E. A., and C. M. Tu: Alteration of microbial activities, mineral nitrogen and free amino acid constituents of soils by physical treatment. Plant Soil 22, 207–219 (1965).CrossRefGoogle Scholar
  28. Pochon, J., and P. Tardieux: Techniques d’analyse en microbiologie du sol. Collection “Techniques de base” St. Mandé (Seine): Tourelle 1962.Google Scholar
  29. Rossi, G., and S. Riccardo: L’esame microscopico e bacteriologici diretto del terreno agrario. Nuovi Ann. Minist. Agric. 7, 457–470 (1927).Google Scholar
  30. Shanks, R. E., and J. S. Olson: First year breakdown of leaf litter in Southern Appalachian Forests. Science 134, 194–195 (1961).CrossRefPubMedGoogle Scholar
  31. Shazlyel, K., and R. E. Hungate: Method for measuring diaminopimelic acid in total rumen contents and its application to the estimation of bacterial growth. Appl. Microbiology 14, 27–30 (1966).Google Scholar
  32. Siu, R. G., and E. R. Reese: Decomposition of cellulose by microorganisms. Bot. Rev. 19, 377–416 (1953).CrossRefGoogle Scholar
  33. Steubing, L.: Pflanzenökologisches Praktikum. Berlin-Hamburg: Parey 1965.Google Scholar
  34. Strugger, E.: Fluoreszenzmikroskopie und Mikrobiologie. Hannover: Schaper 1949.Google Scholar
  35. Tchan, Y. T.: Counting soil algae by direct fluorescence microscopy. Nature 170, 328–329 (1952).CrossRefGoogle Scholar
  36. Törne, E. V.: Summarized remarks on the rate of wet decomposition of cellulose under biologically different experimental conditions, pp. 473–474. In: Progress in soil biology (Graff, O., and J. E. Satchel, Eds.). Braunschweig: Vieweg & Sohn 1967.Google Scholar
  37. Unger, H.: Der Zellulosetest, eine Methode zur Ermittlung der zellulolytischen Aktivität des Bodens in Freilandversuchen. Z. Pflanzenernähr. Düng. Bodenk. 91, 44–52 (1960).CrossRefGoogle Scholar
  38. Waid, J. S., and M. J. Woodman: Symposium, Methodes d’études microbiologiques du sol. June 1957, Louvain, Belgium (1957).Google Scholar
  39. Wood, E.: A new naturally occurring amino acid. Nature 165, 74–75 (1950).Google Scholar
  40. Work, E.: The isolation of α, ε-diaminopimelic acid from Corynebacterium diphtheriae and Mycobacterium tuberculosis. Biochem. J. 49, 17–23 (1951).CrossRefPubMedPubMedCentralGoogle Scholar
  41. Work, E.: Reaction of ninhydrin in acid solution with straight-chain amino acids containing two amino groups and its application to the estimation of a, e-diaminopimelic acid. Biochem. J. 69, 416–423 (1957).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • L. Steubing

There are no affiliations available

Personalised recommendations