Advertisement

Kohärente Lichtzerstreuung in Lösungen großer Moleküle

  • Th. Bücher
  • D. Mohring
Part of the Handbuch der Physiologisch- und Pathologisch-Chemischen Analyse book series (HOPPE-SEYLER, volume 2)

Zusammenfassung

Der Streulichtmethodik ist die Eleganz aller optischen Verfahren zu eigen. Ihre Theorie eröffnet Möglichkeiten zur Bestimmung einer Reihe von Größen des molekularen Bereiches. Prinzipiell lassen sich aus der Qualität und Quantität der Lichtzerstreuung das Molekulargewicht von Makromolekülen, aber auch deren Wechselwirkungen mit und in dem Lösungsmittel und unter Umständen die Gestalt ablesen. Infolgedessen ist die Streulichtmessung als Laboratoriumsmethode in den letzten Jahren zunehmend in das Blickfeld des Biochemikers vorgerückt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Signer, E., u. W. Meyer: Helv. 28, 325 (1945).Google Scholar
  2. 2.
    Lord Eayleigh: On the light from the sky, its polarization and colour; on the scattering of light by small particles. Philos. Mag. 41, 107, 274, 447 (1871), sowie weitere Arbeiten von Lord Eayleigh in den folgenden Jahrgängen des Philosophical Magazin und in den Scientific Papers (Cambridge University Press 1899). Vol. I.Google Scholar
  3. 3.
    Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Physik 25, 377 (1908).Google Scholar
  4. 4.
    Smoluchowski, M. v.: Molekularkinetische Theorie der Opaleszenz von Gasen im kritischen Zustand sowie einiger verwandter Erscheinungen. Ann. Physik 25, 205 (1908).Google Scholar
  5. 5.
    Debye, P.: Der Lichtdruck auf Kugeln von beliebigem Material (Auszug aus der Münchener Dissertation). Ann. Physik 30, 57 (1909).Google Scholar
  6. 6.
    Einstein, A.: Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemisehen in der Nähe des kritischen Zustandes. Ann. Physik 33, 1275 (1910).Google Scholar
  7. 7.
    Lord Eayleigh: The incidence of light upon a transparent sphere of dimensions comparable with the wave length; on the diffraction of light by spheres of small refractive index. Proc. E. Soc. London (A) 84, 25 (1910); 90, 219 (1914).Google Scholar
  8. 8.
    Gans, E.: Über die Form ultramikroskopischer Goldteilchen. Ann. Physik 37, 881 (1912).Google Scholar
  9. 9.
    Eaman, C. V.: Molecular Diffraction of Light. Calcutta 1920.Google Scholar
  10. 10.
    Gans, E.: Ultramikroskopische Studien (Methoden zur Formbestimmung subultramikroskopi- scher Teilchen); Asymmetrie von Gasmolekülen. (Ein Beitrag zur Bestimmung der molekularen Form.) Ann. Physik 62, 331 (1920); 65, 97 (1921).Google Scholar
  11. 11.
    Eaman, C. V., and K. E. Eamanathan: The molecular scattering of light in liquid mixtures. Philos. Mag. 45, 213 (1923).Google Scholar
  12. 12.
    Gans, E.: Das tyndall-Phänomen in Flüssigkeiten. Z. Physik 17, 353 (1923).Google Scholar
  13. 13.
    Blumer, H.: Strahlungsdiagramme kleiner dielektrischer Kugeln. Z. Physik 32, 119 (1925); 38, 304, 920 (1926).Google Scholar
  14. 14.
    Cabannes, J.: La diffusion moléculaire de la hindére. Paris 1929.Google Scholar
  15. 16.
    Pützeys, P., and J. Brosteaüx: The scattering of light in protein solutions. Trans. Faraday Soc. 31, 1314 (1935).Google Scholar
  16. Pützeys, P., and J. Brosteaüx: Light scattering and the molecular weight of the proteins. Meded. Kon. vlaam. Acad. Wet., Kl. Wet. 3, 3 (1941).Google Scholar
  17. 17.
    Bhagavantam, S.: The scattering of light and the eaman-Effect. Brooklyn, N. Y. 1942.Google Scholar
  18. 18.
    Debye, P.: Lecture given at the High Polymer Group of the American Physical Society. Evanston, November 12–13 (1943).Google Scholar
  19. Debye, P.: Light scattering in solutions. J. appl. Physics 15, 338 (1944).Google Scholar
  20. 1.
    Zimm, B. H., R. S. Stein and P. Doty: Classical theory of light scattering from solutions- a review. Polymer Bull. 1, 90 (1945).Google Scholar
  21. 2.
    Oster, G.: The scattering of light and its applications to chemistry. Chem. Eev. 43, 319 (1947).Google Scholar
  22. 3.
    Mark, H.: Light scattering in polymer solutions. Frontiers in Chem. Vol. V. Chemical Architecture. S. 121. New York 1948.Google Scholar
  23. 4.
    Doty, P., and J. T. Edsall: Light scattering in protein solutions. Adv. Protein Chem. 6, 35 (1951).PubMedGoogle Scholar
  24. 5.
    Edsall, J. T., and W. B. Dandliker: Light scattering in solutions of proteins and other large molecules, its relation to molecular size and shape and molecular interactions. Fortschr. chem. Forsch. 2, 1–56 (1951).Google Scholar
  25. 6.
    Stuart, H. A.: Die Physik der Hochpolymeren. Bd. I: Die Struktur des freien Moleküls. Berlin, Göttingen, Heidelberg 1952.Google Scholar
  26. 7.
    Sadron, C.: Les lois de la diffusion de la lumiére du point de vue de leur application à l’étude des macromolécules en solution étendue. J. polymer Sci. 12, 69 (1954).Google Scholar
  27. 8.
    Outer, P.: Aperçu des relations entre le phénomene de la diffusion de la lumière et les pro-prietes des solutions de macromolécules. Makromol. Chem. 7, 111 (1951).Google Scholar
  28. 1.
    Vgl. z. B. Böttcher, C. J. P.: Theory of electric polarisation. Amsterdam, Houston, London, New York 1952Google Scholar
  29. 1.
    Blumer, H.: Z. Physik 32, 119 (1925); 38, 304 (1926).Google Scholar
  30. 2.
    Dandliker, W. B.: Am. Soc. 72, 5110 (1950).Google Scholar
  31. 1.
    Mark, H.: Frontiers in Chem. Bd. V, S. 121, 1948.Google Scholar
  32. 1.
    Debye, P.: J. appl. Physics 15, 338 (1944).Google Scholar
  33. 1.
    Warbürg, O., u. W. Christian: B. Z. 310, 384 (1942).Google Scholar
  34. 2.
    Bücher, T.: Über das Molekulargewicht der Enolase. Angew. Chem. 56, 328 (1943).Google Scholar
  35. Bücher, T.: Biochim. biophysica Acta, N. Y. 1, 467 (1947).Google Scholar
  36. 3.
    Bergold, G.: Z. Naturforsch. 1, 100 (1946).Google Scholar
  37. 4.
    Chibnall, A. C.: Second Procter Memorial Lecture. J. int. Soc. Leather Trades’ Chem. 30, 1 (1946).Google Scholar
  38. 1.
    Smoluchowski, M. v.: Ann. Physik 25, 205 (1908).Google Scholar
  39. 2.
    Einstein, A.: Ann. Physik 33, 1275 (1910).Google Scholar
  40. 1.
    Putzeys, P., and J. Brosteaux: Trans. Faraday Soc. 31, 1314 (1935).Google Scholar
  41. Putzeys, P., and J. Brosteaux: Meded. Kon. vlaam. Acad. Wet., Kl. Wet. 3, 3 (1941).Google Scholar
  42. 2.
    Riley, D. P., and D. Herbert: Biochim. biophysica Acta, N. Y. 4, 374 (1950).Google Scholar
  43. 3.
    Güntelberg, A. V., and K. Linderstrøm-Lang: C. R. Lab. Carlsberg (I) 27, 1 (1949).Google Scholar
  44. 4.
    Bull, H. B.: J. biol. Ch. 137, 143 (1941).Google Scholar
  45. 5.
    Gutfreund, H.: Nature 53, 406 (1944).Google Scholar
  46. 6.
    Eirich, F., and E. K. Rideal: Nature 146, 541 (1940).Google Scholar
  47. 7.
    Svedberg, T., and B. Sjögren: Am. Soc. 50, 3318 (1928).Google Scholar
  48. 8.
    Kekwick, R. A.: Biochem. J. 32, 552 (1938).PubMedGoogle Scholar
  49. 9.
    Adair, G. S., and M. E. Robinson: Biochem. J. 24, 1864 (1930).PubMedGoogle Scholar
  50. 10.
    Fankuchen, I.: Adv. Protein Chem. 2, 387 (1945).Google Scholar
  51. 11.
    Scatchard, G., A. C. Batchelder and A. Brown: Am. Soc. 68, 2320 (1946).Google Scholar
  52. 12.
    Oncley, J. L., G. Scatchard and A. Brown: J. physic. Colloid Chem. 51, 184 (1947).Google Scholar
  53. 13.
    Creeth, J. M.: Biochem. J. 51, 10–17 (1952).PubMedGoogle Scholar
  54. 14.
    Svedberg, T., and I. B. Eriksson-Quensel: Tab. biol. period. 11, 351 (1936).Google Scholar
  55. 1.
    Zimm, B. H., R. S. Stein and P. Doty: Polymer Bull. 1, 90–119 (1945)Google Scholar
  56. 1.
    Mark, H.: Frontiers in Chem. Vol. V, S. 121. 1948.Google Scholar
  57. 2.
    Blosser, L. G-., and H. G. Drickamer: The prediction of isothermal compressibilities by light scattering. J. chem. Physics 19, 1244 (1951).Google Scholar
  58. 3.
    Babb, A. L., and H. G. Drickamer: The prediction of thermodynamic properties of nonideal solutions from turbidity measurements. J. chem. Physics 20, 290 (1952).Google Scholar
  59. 4.
    Zimm, B. H.: Opalescence of a two-component liquid system near the critical mixing point. J. physic. Colloid Chem. 54, 1306 (1950).Google Scholar
  60. 5.
    Gans, E.: Das tyndall-Phänomen in Flüssigkeiten. Z. Physik 17, 353 (1923).Google Scholar
  61. 6.
    Raman, C. V., and K. E. Ramanthan: The molecular scattering of light in liquid mixtures. Philos. Mag. 45, 213 (1923).Google Scholar
  62. 1.
    Halwer, M., G. C. Nutting and B. A. Brice: Molecular weight of lactoglobulin, ovalbumin, lysozyme and serum albumin by light scattering. Am. Soc. 73, 2786 (1951).Google Scholar
  63. 2.
    Brice, B. A., M. Halwer and E. Speiser: Photoelectric light scattering photometer for determining high molecular weights. Determination of the diffuse transmittance of opal glass and the use of opal glass as a standard diffusor in light scattering photometers. J. opt. Soc. Amer. 40, 768 (1950); 44, 340 (1954).Google Scholar
  64. 3.
    Gelduschek, E. P.: J. polymer Sci. 13, 408 (1954).Google Scholar
  65. 4.
    Lewis, J. C., N. S. Snell, D. J. Hirschmann and H. Fraenkel-Conrat: J. biol. Ch. 186, 23 (1950).Google Scholar
  66. 5.
    Fromageot, C, Et M. P. de Garilhe: Biochim. biophysica Acta, N. Y. 4, 509 (1950).Google Scholar
  67. 6.
    Alderton, G., W. H. Ward and H. L. Fevolt: J. biol. Ch. 157, 43 (1945).Google Scholar
  68. 7.
    Palmer, K. J., M. Ballantyne and J. A. Galvin: Am. Soc. 70, 906 (1948).Google Scholar
  69. 9.
    Palmer, A. H.: J. biol. Ch. 104, 359 (1934).Google Scholar
  70. 10.
    Bull, H. B., and B. T. Currie: Am. Soc. 68, 742 (1946).Google Scholar
  71. 11.
    Senti, F. E., and E. C. Warner: Am. Soc. 70, 3318 (1948).Google Scholar
  72. 12.
    Cecil, E., and A. G. Ogston: Biochem. J. 44, 33 (1949).Google Scholar
  73. 13.
    Søensen, S. P. L., and M. Høyrup: C. E. Lab. Carlsberg (I) 12, 12 (1917).Google Scholar
  74. 1.
    Edsall, J. T., H. Edelhoch, R. Lontie and P. R. Morrison: Light scatting in solutions of serum albumin: effects of charge and ionic strenght. Am. Soc. 72, 4641 (1950)Google Scholar
  75. 2.
    Cohn, E. J., W. L. Hughes jr. and J. H. Weare: Am. Soc. 69, 1753 (1947).Google Scholar
  76. 3.
    Geiduschek, E. P.: J. polymer Sci. 13, 408 (1954).Google Scholar
  77. 1.
    Schulz, G. V.: Osmotischer Druck; in Stuart, H. A.: Die Physik der Hochpolymeren. Bd. II: Das Makromolekül in Lösungen. Berlin, Göttingen, Heidelberg 1953, besonders § 58, S. 373.Google Scholar
  78. 2.
    Zimm, B. H., W. H. Stockmayer and M. Fixman: Excluded volume in polymer chains. J. chem. Physics 21, 1716 (1953).Google Scholar
  79. 3.
    Edsall, J. T., H. Edelhoch, E. Lontie and P. E. Morrison: Am. Soc. 72, 4641 (1950).Google Scholar
  80. 4.
    Scatchard, G., A. C. Batchelder and A. Brown: Preparation and properties of serum and plasma proteins. VI. Osmotic equilibria in solutions of serum albumin and sodium chloride. Am. Soc. 68, 2320 (1946).Google Scholar
  81. 1.
    Yasnoff, D. S., and H. B. Bull: Interaction of egg albumin and pepsin. J. biol. ch.200, 619 (1953)Google Scholar
  82. 2.
    Kekwick, R. A., and R. A. Cannan: Biochem. J. 30, 227 (1950)Google Scholar
  83. 3.
    Northrop, J. H.: J. gen. Physiol. 30, 177 (1946).PubMedGoogle Scholar
  84. 4.
    Stockmayer, W. H., u. H. E. Stanley: J. chem. Physics 18, 153 (1950).Google Scholar
  85. 1.
    Zimm, B. H., and P. M. Doty: The effect of non-homogeneity of molecular weight on the scattering of light by high polymer solutions. J. chem. Physics 12, 203 (1944).Google Scholar
  86. 2.
    Brinkman, H. c, and J. J. Hermans: The effect of non-homogeneity of molecular weight on the scattering of light by high polymer solutions. J. chem. Physics 17, 574 (1949).Google Scholar
  87. 3.
    Stockmayer, W. H., and H. E. Stanley: Light scattering measurement of interaction between unlike polymers. J. chem. Physics 18, 153 (1950).Google Scholar
  88. 1.
    Ewart, R. H., C. P. Roe, P. Debye and J. E. Mccartney: The determination of polymeric molecular weights by light scattering in solvent-precipitant systems. J. chem. Physics 14, 687 (1946).Google Scholar
  89. 2.
    Zernike, F.: L’opalescentfe critique. Diss. Amsterdam 1915.Google Scholar
  90. 3.
    Zernike, F.: Etude theorique et experimentale de l’opalescence critique. Arch, neerl. Sci. exact, natur. (A) Ser. 3, 4, 74 (1918).Google Scholar
  91. 4.
    Brinkman, H. C, and J. J. Hermans: The effect of non-homogeneity of molecular weight on the scattering of light by high polymer solutions. J. chem. Physics 17, 574 (1949).Google Scholar
  92. 5.
    Kirkwood, J. Gr., and E. J. Goldberg: Light scattering arising from composition fluctuations in multicomponent systems. J. chem. Physics 18, 54 (1950).Google Scholar
  93. 6.
    Stockmayer, W. H.: Light scattering in multicomponent systems. J. chem. Physics 18,58 (1950).Google Scholar
  94. 7.
    Blum, J. J., and M. F. Morales: Light scattering of multicomponent macromolecular systems. J. chem. Physics 20, 1822 (1952).Google Scholar
  95. 8.
    Hermans, J. J.: Light scattering by charged particles in electrolyte solutions. Proc. int. Coll. on Macromolecules. Amsterdam 1949. Eecu. Trav. chim. Pays-Bas 68, 859 (1949).Google Scholar
  96. 9.
    Edsall, J. T., H. Edelhoch, E. Lontie and P. E. Morrison: Light scattering in solutions of serum albumin: effects of charge and ionic strenght. Am. Soc. 72, 4641 (1950).Google Scholar
  97. 10.
    Scatchard, G.: Physical chemistry of protein solutions. I. Derivation of the equations for the osmotic pressure. Am. Soc. 68, 2315 (1946).Google Scholar
  98. 11.
    Scatchard, G., A. C. Batchelder and A. Brown: Preparation and properties of serum and plasma proteins. VI. Osmotic equilibria in solutions of serum albumin and sodium chloride. Am. Soc. 68, 2320 (1946).Google Scholar
  99. 12.
    Scatchard, G., and E. S. Black: The effect of salts on the isoionic and isoelectric points of proteins. J. physic. Colloid Chem. 53, 88 (1949).Google Scholar
  100. 13.
    Scatchard, G., J. H. Scheinberg and S. H. Armstrong jr.: Physical chemistry of protein solutions. IV. The combination of human serum albumin with chloride ion. V. The combination of human serum albumin with thiocyanate ion. Am. Soc. 72, 535, 540 (1950).Google Scholar
  101. 1.
    Edsall, J. T., H. Edelhoch, R. Lontie and P. R. Morrison: Light scattering in solutions of serum albumin: effects of charge and ionic strenght. Am. Soc. 72, 4641 (1950).Google Scholar
  102. 2.
    Doty, P., and J. T. Edsall: Light scattering in protein solutions. Adv. Protein Chem. 6, 35 (1951).PubMedGoogle Scholar
  103. 3.
    Edsall, J. T., and W. B. Dandliker: Light scattering in solutions of proteins and other large molecules, its relation to molecular size and shape and molecular interactions. Fortschr. chem. Forsch. 2, 1 (1951).Google Scholar
  104. 1.
    Doty, P., and J. T. Edsall: Adv. Protein Chem. 6, 35 (1951), besonders S. 71.PubMedGoogle Scholar
  105. 2.
    Doty, P., and J. T. Edsall: Adv. Protein Chem. 6, 35 (1951), besonders S. 72.PubMedGoogle Scholar
  106. 3.
    Wall, F. T., I. W. Drenan, M. R. Hatfield and C. L. Paintner: Light scattering studies on Coiling Poly electrolytes. J. chem. Physics 19, 585 (1951).Google Scholar
  107. 4.
    Doty, P., and R. F. Steiner: Light scattering from solutions of charged macromolecules. J. chem. Physics 17, 743 (1949).Google Scholar
  108. 5.
    Doty, P., and R. F. Steiner: Macro Ions I. Light scattering theory and experiments with bovine serum albumin. J. chem. Physics 20, 85 (1952).Google Scholar
  109. 6.
    Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Physik 25, 377 (1908)Google Scholar
  110. 1.
    Blumer, H.: Strahlungsdiagramme kleiner dielektrischer Kugeln. Z. Physik 32, 119 (1925).Google Scholar
  111. Blumer, H.: Strahlungsdiagramme kleiner dielektrischer Kugeln. II. Z. Physik 38, 304, 920 (1926).Google Scholar
  112. Blumer, H.: Die Farbenzerstreuung an kleinen Kugeln. Z. Physik 39, 195 (1926).Google Scholar
  113. 2.
    La Mer, V. K., and M. D. Barnes: Monodispersed hydrophobic colloidal dispersions and light scattering properties. I. Preparation and light scattering properties of monodispersed colloidal sulfur. J. Colloid Sci. 1, 71 (1946).Google Scholar
  114. La Mer, V. K., and M. D. Barnes: A note on the symbols and definitions involved in light scattering equations. J. Colloid Sci. 2, 361 (1947).Google Scholar
  115. La Mer, V. K., and D. Sinclair: Verification of Mie Theory: OSRD Eeport Nr. 1857 and Report Nr. 944, Office of Publications Board, U. S. Department of Commerce (1943).Google Scholar
  116. 3.
    Gtlicker, F. T. jr., and S. H. Cohn: Numerical evaluation of the Mie scattering functions. Table of the angular functions π n and π n of orders 1 to 32. J. Colloid Sci. 8, 555 (1953).Google Scholar
  117. 1.
    Hulst H. C. van de: Optics of spherical particks. Rech, astron. Observ. Utrecht XI, Part. 1/1 (1946).Google Scholar
  118. 2.
    Zimm, B. H., R. S. Stein and P. Doty: Classical theory of light scattering from solutions – A review. Polymer. Bull. 1, 90 (1945).Google Scholar
  119. 3.
    Debye, P.: Zerstreuung von Röntgenstrahlen. Ann. Physik 46, 809 (1915).Google Scholar
  120. Debye, P.: Über die Zerstreuung von Röntgenstrahlen an amorphen Körpern. Physik. Z. 28, 135 (1927).Google Scholar
  121. Debye, P.: Light scattering in solutions. J. appl. Physics 15, 338 (1944).Google Scholar
  122. Debye, P.: Molecular-weight determination by light scattering. J. physic. Colloid Chem. 51, 18 (1947).Google Scholar
  123. 4.
    Zimm, B. H.: The scattering of light and the radial distribution function of high polymer solutions. J. chem. Physics 16, 1093 (1948).Google Scholar
  124. 5.
    Zimm, B. H.: Apparatus and methods for measurement and interpretation of the angular variation of light scattering; preliminary results on polystyrene solutions. J. chem. Physics 16, 1099 (1948).Google Scholar
  125. 6.
    Dandliker, W. B.: Light scattering studies of a polystyrene latex. Am. Soc. 72, 5110 (1950).Google Scholar
  126. 7.
    Mark, H.: Frontiers in Chemistry. V. Chemical Architecture New York 1948. Vgl. besonders S. 143.Google Scholar
  127. 1.
    Zimm, B. H., R. S. Stein u. P. Doty: Polymer Bull. 1, 90 (1945).Google Scholar
  128. 2.
    Oster, Gr., P. M. Doty and B. H. Zimm: Light scattering studies of tobacco mosaic virus. Am. Soc. 69, 1193 (1947).Google Scholar
  129. 3.
    Doty, P., and R. F. Steiner: J. chem. Physics 18, 1211 (1950).Google Scholar
  130. 4.
    Schramm, G.: Adv. Enzymol. 15, 449 (1954).Google Scholar
  131. 1.
    Doty, P. and R. F. Steiner: Light scattering and spectrophotometry of colloidal solutions. J. chem. Physics 18, 1211 (1950).Google Scholar
  132. 2.
    Zimm, B. H.: J. chem. Physics 16, 1093 (1948).Google Scholar
  133. 3.
    Lord Rayleigh: On the diffraction of light by spheres of small refractive index. Proc. R. Soc. London (A) 90, 219 (1914).Google Scholar
  134. 4.
    Neugebauer, T.: Berechnung der Lichtzerstreuung von Fadenkettenlösungen. Ann. Physik (5) 42, 509 (1943).Google Scholar
  135. 5.
    Debye, P.: Ann. Physik (4) 46, 809 (1915).Google Scholar
  136. Debye, P.: Physik. Z. 28, 135 (1927).Google Scholar
  137. Debye, P.: J. appl. Physics 15, 338–342 (1944).Google Scholar
  138. Debye, P.: J. physic. Colloid Chem. 51, 18 (1947).Google Scholar
  139. 1.
    Oster, G., P. M. Doty and B. H. Zimm: Light scattering studies of tobacco mosaic virus. Am. Soc. 69, 1193 (1947).Google Scholar
  140. 2.
    Debye, P. P.: A photoelectric instrument for light scattering measurements and a differential refractometer. J. appl. Physics 17, 392 (1946).Google Scholar
  141. 3.
    Schulz, G. V., H. J. Cantow u. G. Meyerhoff: Bestimmung des Durchmessers geknäulter Fadenmoleküle aus Lichtzerstreuung und Viskositätszahl: Untersuchung an Polymethylmethacrylaten. J. polymer Sci. 10, 79 (1953).Google Scholar
  142. 4.
    Cantow, H. J., u. G. V. Schulz: Konstruktion eines Streulichtphotometers und dessen Eichung durch Messungen im Eayleigh-Bereich. Z. physik. Chem. (N. F.) 1, 365 (1954).Google Scholar
  143. 1.
    Lord Rayleigh: On the diffraction of light by spheres of small refractive index. Proc. R. Soc. London (A) 90, 219 (1914).Google Scholar
  144. 2.
    Debye, P.: Ann. Physik (4) 46, 809 (1915).Google Scholar
  145. Debye, P.: Physik. Z. 28, 135 (1927).Google Scholar
  146. Debye, P.: J. appl. Physics 15, 338–342 (1944).Google Scholar
  147. Debye, P.: J. physic. Colloid Chem. 51, 18 (1947).Google Scholar
  148. 3.
    Neugebauer, T.: Berechnung der Lichtzerstreuung von Fadenkettenlösungen. Ann. Physik (5) 42, 509 (1943).Google Scholar
  149. 4.
    Kuhn, H.: Gestalt und Größe gelöster Fadenmoleküle aus Streulichtdepolarisationsmessungen. Helv. 29, 432 (1946).Google Scholar
  150. 5.
    Zimm, B. H., R. S. Stein and P. Doty: Polymer Bull. 1, 90 (1945).Google Scholar
  151. 6.
    Doty, P., and R. F. Steiner: J. chem. Physics 18, 1211 (1950).Google Scholar
  152. 1.
    Fournet, G., et A. Guinier: L’état actuel de la théorie de la diffusion des rayons X aux petits angles. J. Physique Radium 11, 516 (1950).Google Scholar
  153. 2.
    Guinier, A.: La diffraction des rayons X aux trés petits angles: application à l’étude de phénomènes ultramicroscopiques. Ann. Physique 12, 161 (1939).Google Scholar
  154. 3.
    Roess, L. C, and C. G. Shull: X-Ray scattering at small angles by finely-divided solids. II. Exact theory for random distributions of spheroidal particles. 1 J. appl. Physics 18, 308 (1947).Google Scholar
  155. 4.
    Debye, P. in Doty, P., and J. T. Edsall: Light scattering in protein solutions. Adv. Protein Chem. 6, 35 (1951), besonders S. 76.Google Scholar
  156. 5.
    Horn, P., H. Benoit et G. Oster: Étude de la lumiere diffusée par des solutions très diluées de bâtonnets optiquement anisotropes. J. Chim. physique Physico-Chim. biol. 48, 530 (1951).Google Scholar
  157. 6.
    Horn, P., et H. Benoit: Étude expérimentale de la lumiere diffusée par des bâtonnets anisotropes. J. polymer Sci. 10, 29 (1953).Google Scholar
  158. 7.
    Benoit, H., and M. Goldstein: Angular distribution of the light scattered by random coils. J. chem. Physics 21, 947 (1953).Google Scholar
  159. 8.
    Benoit, H.: On the effect of branching and polydispersity on the angular distribution of the ight scattered by Gaussian coils. J. polymer Sci. 11, 507 (1953).Google Scholar
  160. 9.
    Peterlin, A.: Modele statistique des grosses molecules a chaines courtes. J. polymer Sei. 10, 425 (1953).Google Scholar
  161. 10.
    Zimm, B. H.: J. chem. Physics 16, 1093 (1948).Google Scholar
  162. 11.
    Goldstein, M.: Scattering factors for certain polydisperse systems. J. chem. Physics 21, 1255 (1953).Google Scholar
  163. 12.
    Doty, P., and R. F. Steiner: J. chem. Physcis 18, 1211 (1950).Google Scholar
  164. 1.
    Doty, P., and K. F. Steiner: J. chem. Physics 18, 1211 (1950).Google Scholar
  165. 2.
    Katz, S.: Am. Soc. 74, 2238 (1952).Google Scholar
  166. 3.
    Signer, K., u. H. Schwander: Helv. 32, 853 (1949); 33, 1521 (1950).Google Scholar
  167. 4.
    Bueche, F., P. Debye and W. M. Cashin: Expressions for turbidities. J. chem. Physics 19, 803 (1951).Google Scholar
  168. 5.
    Goldstein M.: Scattering factors for certain polydisperse systems. J. chem. Physics 21,1255 (1953).Google Scholar
  169. 1.
    Doty, P., and R. F. Steiner: J. chem. Physics 18, 1211 (1950).Google Scholar
  170. 1.
    Lotmar, W.: Über den Zusammenhang zwischen Depolarisationsgrad und Teilcheneigenschaft bei der Lichtstreuung in Kolloiden. Helv. 21, 792 (1938).Google Scholar
  171. 2.
    Krishnan, E. S.: Proc. ind. Acad. Sci. (A) 1, 782 (1935), zitiert nach W. Lotmar1.Google Scholar
  172. 3.
    Krishnan, R. S.: Über die Dispersion der Depolarisation bei der Lichtstreuung in kolloiden Systemen. Kolloid-Z. 84, 2 (1938).Google Scholar
  173. 4.
    Dandliker, W. B.: Am. Soc. 72, 5110 (1950).Google Scholar
  174. 5.
    Stuart, H. A.: Die Physik der Hochpolymeren. Bd. II. Berlin, Göttingen, Heidelberg 1953. besonders S. 514.Google Scholar
  175. 6.
    Blumer, H.: Z. Physik 32, 119 (1925); 38, 304 (1926); 39, 195 (1926).Google Scholar
  176. 7.
    Edsall, J. T., and W. B. Dandliker: Fortschr. chem. Forsch. 2, 1 (1951).Google Scholar
  177. 8.
    Schuster, A., and J. W. Nicholson: Theory of Optics. 3. Aufl., bes. S. 320. London 1928.Google Scholar
  178. 1.
    Krishnan, E. S.: Proc. ind. Acad. Sci. (A) 1, 782 (1935).Google Scholar
  179. 2.
    Krishnan, E. S.: Kolloid-Z. 84, 2 (1938).Google Scholar
  180. 3.
    Perrin, F.: Polarisation of light scattered by isotropic opalescent media. J. chem. Physics 10, 415 (1942)Google Scholar
  181. 1.
    Lotmar, W.: Über die Lichtzerstreuung in Lösungen von Hochmolekularen. Helv. 21, 953 (1938).Google Scholar
  182. 2.
    Gans, K.: Methoden zur Formbestimmung subultramikroskopischer Teilchen. Ann. Physik (4) 62, 331 (1920).Google Scholar
  183. 3.
    Gans, E.: Asymmetrie von Gasmolekülen. Ein Beitrag zur Bestimmung der molekularen Form. Ann. Physik (4) 65, 97 (1921).Google Scholar
  184. 4.
    Lord Eayleigh: On the scattering of light by a cloud of similar small particles of any shape and oriented at random. Philos. Mag. (6) 35, 373 (1918).Google Scholar
  185. 1.
    Cabannes, J.: La diffusion moleculaire de la lumiere. Paris 1929.Google Scholar
  186. 2.
    Gans, E.: Das tyndall-Phänomen in Flüssigkeiten. Z. Physik 17, 353 (1923).Google Scholar
  187. 3.
    Stuart, H. A., u. W. Buchheim: Z. Physik 111, 36 (1938).Google Scholar
  188. 4.
    Stuart, H. A.: Hand- u. Jb. chem. Physik (Eucken-Wolf). Bd. 10/III. Leipzig 1939.Google Scholar
  189. 5.
    Stuart, H. A.: Die Physik der Hochpolymeren. Bd. I. Berlin, Göttingen, Heidelberg 1952, besonders S. 430: Elektrische Doppelbrechung, optische Anisotropie und Molekülstruktur, b) Zusammenhang mit dem Depolarisationsgrade des molekularen Streulichtes.Google Scholar
  190. 6.
    Gans, E.: Ann. Physik (4) 62, 331 (1921).Google Scholar
  191. 7.
    Doty, P., and J. T. Edsall: Adv. Protein Chem. 6, 35 (1951).PubMedGoogle Scholar
  192. 8.
    Lotmar, W.: Helv. 21, 953 (1938), besonders S. 48.Google Scholar
  193. 1.
    Lotmar, W.: Helv. 21, 792 (1938), besonders S. 968.Google Scholar
  194. 2.
    Lotmar, W.: Helv. 21, 953 (1938).Google Scholar
  195. 3.
    Volkmann, H.: Messungen des Depolarisationsgrades bei der molekularen Lichtzerstreuung. Ann. Physik (5) 24, 457 (1935).Google Scholar
  196. 4.
    Kuhn, H.: Gestalt und Größe gelöster Fadenmoleküle aus Streulichtdepolarisationsmessungen. Helv. 29, 432 (1946).Google Scholar
  197. 5.
    Doty, P.: Depolarization of light scattered from dilute macromolecular solutions. I. Theoretical discussion. J. polymer Sci. 3, 750 (1948).Google Scholar
  198. 6.
    Doty, P., and H. S. Kaufman: The depolarization of light scattered from polymer solutions. J. physic. Chem. 49, 583 (1945).Google Scholar
  199. 7.
    Doty, P., and S. J. Stein: Depolarization of light scattered from dilute macromolecular solutions. II. Experimental results. J. polymer Sci. 3, 763 (1948).Google Scholar
  200. 8.
    Horn, P., H. Benoit et G. Oster: J. Chim. physique Physico-Chim. biol. 48, 530 (1951).Google Scholar
  201. 9.
    Horn, P., et H. Benoit: J. polymer Sci. 10, 29 (1953).Google Scholar
  202. 10.
    Zimm, B. H., R. S. Stein and P. Doty: Polymer Bull. 1, 90 (1945).Google Scholar
  203. 1.
    Doty, P., and R. F. Steiner: Light scattering and spectrophotometry of colloidal solutions. J. chem. Physics 18, 1211 (1950).Google Scholar
  204. 2.
    Mommaerts, W. F. H. M.: The measurement of light scattering intensities according to Brice. J. Colloid Sci. 7, 71 (1952).Google Scholar
  205. 4.
    Carr, C. I. jr., and B. H. Zimm: Absolute intensity of light scattering from pure liquides and solutions. J. chem. Physics 18, 1616 (1950).Google Scholar
  206. 5.
    Chance, B.: Rev. sei. Instrum. 22, 619 (1951).Google Scholar
  207. 6.
    Halwer, M., Gr. C. Nutting and B. A. Brice: Rayleighs ratio for benzene and the problem of absolute light scattering determinations. J. chem. Physics 21, 1425 (1953).Google Scholar
  208. 1.
    Carr, C. I. jr., and B. H. Zimm: J. chem. Physics 18, 1616 (1950).Google Scholar
  209. 2.
    Brice, B. A., M. Halwer and R. Speiser: Photoelectric light scattering photometer for determining high molecular weights. J. opt. Soc. Amer. 40, 268 (1950).Google Scholar
  210. 3.
    Hermans, J. J., and S. Levinson: Some geometrical factors in light scattering apparatus. J. opt. Soc. Amer. 41, 460 (1951).Google Scholar
  211. 1.
    Brice, B. A., M. Halwer and E. Speiser: J. opt. Soc. Amer. 40, 768 (1950).Google Scholar
  212. 2.
    Brice, B. A., and M. Halwer: Determination of the diffuse transmittance of opal glass and the use of opal glass as a standard diffusor in light scattering photometers. J. opt. Soc. Amer. 44, 340 (1954).Google Scholar
  213. 3.
    Bücher, T.: Biochim. biophysica Acta, N. Y. 1, 467 (1947).Google Scholar
  214. 4.
    Cantow, H.-J., u. G. V. Schulz: Z. physik. Chem. (N. F.) 1, 365 (1954).Google Scholar
  215. 5.
    Debye, P. P.: A photoelectric instrument for light scattering measurements and a differential refractometer. J. appl. Physics 17, 392 (1946).Google Scholar
  216. 6.
    Carr, C. I. jr., and B. H. Zimm: J. chem. Physics 18, 1616 (1950).Google Scholar
  217. 7.
    Middleton, W. E. K., and C. L. Sanders: The absolute spectral diffuse reflectance of magnesium oxide. J. opt. Soc. Amer. 41, 419 (1951).Google Scholar
  218. * Vgl. auch: Doty, P. und R. F. Steiner: J. chem. Physics 18, 1211 (1950); bes. S.1216.Google Scholar
  219. 1.
    Carr, C. I. jr., and B. H. Zimm: J. chem. Physics 18, 1616 (1950).Google Scholar
  220. 2.
    Brice, B. A., M. Halwer and E. Speiser: J. opt. Soc. Amer. 40, 768 (1950).Google Scholar
  221. 3.
    Brice, B. A., and M. Halwer: J. opt. Soc. Amer. 44, 340 (1954).Google Scholar
  222. 5.
    Zimm, B. H.: Comments on the question of the correct values for the light scattering power of pure liquids. J. polymer Sci. 10, 351 (1953).Google Scholar
  223. 6.
    Halwer, M., G. C. Nutting and B. A. Brice: J. chem. Physics 21, 1425 (1953).Google Scholar
  224. 7.
    Eousset, A., et E. Lochet: Les constants de Lord Eayleigh des liquides etalons. J. polymer Sci. 10, 319 (1953).Google Scholar
  225. 8.
    Stamm, E. F., and P. A. Button: J. chem. Physics 21, 1304 (1953).Google Scholar
  226. 9.
    Cabannes, J., et P. Daure: Cr. 184, 520 (1927).Google Scholar
  227. 10.
    Hermans, J. J., and S. Levinson: J. opt. Soc. Amer. 41, 460 (1951).Google Scholar
  228. 1.
    Meier, D. J.: The refractive index correction in light scattering measurements. J. chem. Physics 21, 1892 (1953).Google Scholar
  229. 3.
    Carr, C. I. jr., and B. H. Zimm: J. chem. Physics 18, 1616 (1950).Google Scholar
  230. 4.
    Hermans, J. J., and S. Levinson: J. opt. Soc. Amer. 41, 460 (1951).Google Scholar
  231. 1.
    Zimm, B. H.: The scattering of light and the radial distribution function of high polymer solution. J. ehem. Physics 16, 1093 (1948).Google Scholar
  232. 2.
    Cantow, H.-J., u. G. V. Schulz: Z. physik. Chem., N. F. 1, 365 (1954).Google Scholar
  233. 1.
    Cantow, H.-J., u. G. V. Schulz: Z. physik. Chem. (N. F.) 1, 365 (1954).Google Scholar
  234. 2.
    Meier, D. J.: J. chem. Physics 21, 1892 (1953).Google Scholar
  235. 1.
    Bücher, T.: Biochim. biophysica Acta, N. Y. 1, 467 (1947).Google Scholar
  236. 2.
    Kubowitz, F., u. P. Ott: B. Z. 314, 94 (1943).Google Scholar
  237. 3.
    Warburg, O., u. W. Christian: B. Z. 303, 40 (1939).Google Scholar
  238. 1.
    Putzeys, P. and J. Brosteaux: Trans. Faraday Soc. 31, 1314 (1935).Google Scholar
  239. Putzeys, P. and J. Brosteaux: Meded. Kon. vlaam. Acad. Wet., Kl. Wet. 3, 3 (1941).Google Scholar
  240. Debye, P. P.: J. appl. Physics 17, 392 (1946).Google Scholar
  241. Bücher, T.: Biochim. biophysica Acta, N. Y. 1, 467 (1947).Google Scholar
  242. Zimm, B. H.: J. chem. Physics 16, 1099 (1948).Google Scholar
  243. Bischoff, J., et V. Desreux: Bull. Soc. chim. Beige 59, 536 (1950).Google Scholar
  244. Blaker, K. H., E. M. Badger, and T. S. Gilman: J. physic. Colloid Chem. 53, 794 (1949).Google Scholar
  245. Brice, B. A., M. Halwer and E. Speiser: J. opt. Soc. Amer. 40, 768 (1950).Google Scholar
  246. Hengstenberg, J.: Makromol. Chem. 6, 127 (1951).Google Scholar
  247. Blosser, L. G., and H. G. Drickamer: J. chem. Physics 19, 1244 (1951).Google Scholar
  248. Goring, D. A. J., and P. Johnson: Trans. Faraday Soc. 48, 367 (1952).Google Scholar
  249. Bosworth, P., C. E. Masson, H. Melville and F. W. Peaker: J. polymer Sci. 9, 565 (1952).Google Scholar
  250. Cantow, H. J., u. G. V. Schulz: Z. physik. Chem. (N. F.) 1, 365 (1954).Google Scholar
  251. 2.
    Cantow, H.-J., u. G. V. Schulz: Z. physik. Chem. (N. F.) 1, 365 (1954).Google Scholar
  252. 1.
    Cantow, H.-J., u. G. V. Schulz: Z. physik. Chem. (N. F.) 1, 365 (1954).Google Scholar
  253. 1.
    Cantow, H.-J., u. G. V. Schulz: Z. physik. Chem. (N. F.) 1, 365 (1954).Google Scholar
  254. 1.
    Brice, B. A., M. Halwer and K. Speiser: J. opt. Soc. Amer. 40, 768 (1950).Google Scholar
  255. 1.
    Cantow, H.-J., u. G. Y. Schulz: Z. physik. Chem., N. F. 1, 365 (1954).Google Scholar
  256. 2.
    Volkmann, J. L.: Ann. Physik. (5) 24, 457 (1935).Google Scholar
  257. 3.
    Lotmar, W.: Helv. 21, 792, 953 (1938).Google Scholar
  258. 4.
    Hoover, C. E., F. W. Putnam and E. Gr. Wittenberg: J. physic. Chem. 46, 81 (1942).Google Scholar
  259. 5.
    Doty, P., and H. S. Kaufman: J. physic. Chem. 49, 583 (1945).Google Scholar
  260. 6.
    Dott, P., and S. J. Stein: J. polymer Sci. 3, 763 (1948).Google Scholar
  261. 1.
    Lotmar, W.: Helv. 21, 792, 953 (1938).Google Scholar
  262. 2.
    Doty, D., and H. S. Kaufman: J. physic. Chem. 49, 583 (1945).Google Scholar
  263. 3.
    Doty, P., and S. J. Stein: J. polymer Sci. 3, 763 (1948).Google Scholar
  264. 4.
    Gelduschek, E. P.: Depolarization of light scattering by globular proteins. J. polymer Sci. 13, 408 (1954).Google Scholar
  265. 1.
    Mommaerts, W. F. M.: J. Colloid Sci. 7, 71 (1952).Google Scholar
  266. 2.
    Brice, B. A., M. Halwer and R. Speiser: J. opt. Soc. Amer. 40, 768 (1950).Google Scholar
  267. 1.
    Debye, P. P.: J. appl. Physies 17, 392 (1946).Google Scholar
  268. 2.
    Haber, F.: Z. Elektrochem. 13, 460 (1907).Google Scholar
  269. 3.
    Brice, B. A., and M. Halwer: J. opt. Soc. Amer. 41, 1033 (1951).Google Scholar
  270. 4.
    Schulz, G. V., O. Bodman u. H. J. Cantow: Z. Naturforsch. 7a, 760 (1952).Google Scholar
  271. Schulz, G. V., O. Bodman u. H. J. Cantow: J. polymer Sci. 10, 73 (1953).Google Scholar
  272. 5.
    Perlmann, Gr. F., and L. G. Longsworth: The specific refractive increment of some purified proteins. Am. Soc. 70, 2719 (1948).Google Scholar
  273. 1.
    Schulz, Gr. V., O. Bodman u. H. J. Cantow: Z. Naturforsch. 7a, 760 (1952).Google Scholar
  274. Schulz, Gr. V., O. Bodman u. H. J. Cantow: J. polymer Sci. 10, 73 (1953).Google Scholar
  275. 2.
    Armstrong, S. H. jr., M. J. E. Budka, K. C. Morrison and M. Hasson: The refractive properties of the proteins of human plasma and certain purified fractions. Am. Soc. 69, 1747 (1947).Google Scholar
  276. 3.
    Perlmann, Gr. E., and L. G. Longsworth: The specific refractive increment of some purified proteins. Am. Soc. 70, 2719 (1948).Google Scholar
  277. 4.
    Halwer, M., C. O. Nutting and B. A. Brice: Am. Soc. 73, 2786 (1951).Google Scholar
  278. 5.
    Tietze, F., and H. Neurath: Light scattering studies on insulin. The minimum molecular weight of insulin. J. biol. Ch. 194, 1 (1952) (dort auch Lichtzerstreuungsdaten für Chymotryp-sinogen).Google Scholar
  279. 6.
    Tennent, H. GL, and C. F. Vilbrandt: Am. Soc. 65, 424 (1943).Google Scholar
  280. 7.
    Bücher, T.: Biochim. biophysica Acta, N. Y. 1, 467 (1947).Google Scholar
  281. 9.
    Oster, G., P. M. Doty and B. H. Zimm: Am. Soc. 69, 1193 (1947).Google Scholar
  282. 1.
    Perlmann, G. E., and L. G. Longsworth; The specific refactive increment of some purified proteins. Am Soc. 70 2719 (1948).Google Scholar
  283. 2.
    Armstrong, S. H. jr., M. J. E. Budka, K. C. Morrison and M. Hasson: The refractive properties of the proteins of human plasma and certain purified fractions. Am. Soc. 69, 1747 (1947).Google Scholar
  284. 3.
    Halwer, M., C. G. Nutting and B. A. Brice: Am. Soc. 73, 2786 (1951).Google Scholar
  285. 4.
    Bücher, T.: Biochim. biophysica Acta, N. Y. 1, 467 (1947).Google Scholar
  286. 1.
    Doty, P., and E. F. Steiner: J. chem. Physics 18, 1211 (1950).Google Scholar
  287. 2.
    Bueche, F., P. Debye and W. M. Cashin: J. chem. Physics 19, 803 (1951)Google Scholar
  288. 1.
    Schulz, Gr. V., H. J. Cantow and G. Meyerhoff: J. polymer Sci. 10, 79 (1953).Google Scholar
  289. 2.
    Doty, P., and E. F. Steiner: J. chem. Physics 18, 1211 (1950).Google Scholar

Copyright information

© Springer-Verlag OHG Berlin Göttingen Heidelberg 1955

Authors and Affiliations

  • Th. Bücher
  • D. Mohring

There are no affiliations available

Personalised recommendations