Advertisement

Metabolism of indolealkylamines

  • Hermann Blaschko
  • Walter G. Levine
Part of the Handbook of Experimental Pharmacology/Handbuch der experimentellen Pharmakologie book series (HEP, volume 19)

Abstract

Biological inactivation by enzymes has been of interest to the pharmacologist for a long time. The classical study by Otto Loewi of the mechanism of action of eserine has led to the recognition that at many, if not all, cholinergic nerve endings destruction of the mediator by enzymic hydrolysis determines the time course of the response of the effector organ. More recently, Arunlakshana, Monoar and Schild (1954) have found that inhibitors of the enzyme histaminase enhance the response of the excitable tissue to histamine (see also Blaschko and Kurzepa 1962).

Keywords

Monoamine Oxidase Amine Oxidase Phenol Oxidase Oxidative Deamination Human Salivary Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. A., M. R. Ziegler and D. Doeden: Banana feeding and urinary excretion of 5-hydroxyindoleacetic acid. Science 127, 236 (1958).PubMedGoogle Scholar
  2. Arioka, I., and H. Tanimukai: Histochemical studies of monoamine oxidase in the midbrain of the mouse. J. Neurochem. 1, 311 (1957).PubMedGoogle Scholar
  3. Armstrong, M. D., K. N. F. Shaw, J. Gortakowski and H. Singer: The indole acids of human urine. Paper chromatography of indole acids. J. biol. Chem. 234, 17 (1958).Google Scholar
  4. Arnaiz, G. R. De L., and E. De Robertis: Cholinergic and noncholinergic nerve endings in the rat brain. II. Subcellular localization of monoamine oxidase and succinate dehydrogenase. J. Neurochem. 9, 503 (1962).Google Scholar
  5. Arunlakshana, O., J. L. Mongar and H.O.Schild: Potentiation of pharmacological effects of histamine by histaminase inhibitors. J. Physiol. (Lond.) 123, 32 (1954).Google Scholar
  6. Axelrod, J.: Studies on sympathomimetic amines. I. The biotransformation and physiological disposition of (—)-ephedrine and (—)-norephedrine. J. Pharmacol. exp. Ther. 109, 65 (1953).Google Scholar
  7. Axelrod, J.: An enzyme for the deamination of sympathomimetic amines: properties and distribution. J. Pharmacol. exp. Ther. 110, 2 (1954).Google Scholar
  8. Axelrod, J.: The enzymatic deamination of amphetamine (benzedrine). J. biol. Chem. 214, 753 (1955).PubMedGoogle Scholar
  9. Axelrod, J.: Enzymatic formation of psychotomimetic metabolites from normally occurring compounds. Science 134, 343 (1961).PubMedGoogle Scholar
  10. Axelrod, J.: The enzymatic N-methylation of serotonin and other amines. J. Pharmacol. exp. Ther. 138, 28 (1962a).PubMedGoogle Scholar
  11. Axelrod, J.: Purification and properties of phenylethanolamine-N-methyl transferase. J. biol. Chem. 237, 1657 (1962b).PubMedGoogle Scholar
  12. Axelrod, J., I. J. Kopin and J. D. Mann: 3-Methoxy-4-hydroxyphenylglycol sulphate, a new metabolite of epinephrine and norepinephrine. Biochim. biophys. Acta (Amst.) 36, 576 (1959).Google Scholar
  13. Axelrod, J., and H. Weissbach: Enzymatic O-methylation of N-acetylserotonin to melatonin. Science 131, 1312 (1960).PubMedGoogle Scholar
  14. Axelrod, J., and H. Weissbach: Purification and properties of hydroxyindole-O-methyl transferase. J. biol. Chem. 236, 211 (1961).PubMedGoogle Scholar
  15. Baker, R. V.: D. Phil. Thesis, Oxford 1959.Google Scholar
  16. Bertaccini, G.: Effect of removal of large segments of rat intestine on the biosynthesis and metabolism of 5-hydroxytryptamine. Naturwissenschaften 45, 548 (1958).Google Scholar
  17. Bertaccini, G., and S. Chieppa: Urinary excretion of 5-hydroxyindoleacetic acid after removal of the large intestine in man. Lancet 1960 I, 881.Google Scholar
  18. Blaschko, H.: Amine oxidase in Sepia offichialis. J. Physiol. (Lond.) 99, 364 (1941).Google Scholar
  19. Blaschko, H.: Enzymic oxidation of 5-hydroxytryptamine in mammalian and cephalopod tissue. Biochem. J. 52, x (1952a).Google Scholar
  20. Blaschko, H.: Amine oxidase and amine metabolism. Pharmacol. Rev. 4, 415 (1952 b).PubMedGoogle Scholar
  21. Blaschko, H.: Metabolism of epinephrine and norepinephrine. Pharmacol. Rev. 6, 23 (1954).PubMedGoogle Scholar
  22. Blaschko, H.: Biochemical principles in relation to hypotensive-drug action. In: Hypotensive drugs, p. 21 (Ed. M. Harington). London 1956.Google Scholar
  23. Blaschko, H.: Biological inactivation of 5-hydroxytryptamine. In: 5-Hydroxytryptamine, p. 50. (Ed. G. P. Lewis). London 1958.Google Scholar
  24. Blaschko, H.: Primary and secondary amines as substrates of amine oxidases. J. Physiol. (Lond.) 153, 17P (1960).Google Scholar
  25. Blaschko, H.: The amine oxidases of mammalian blood plasma. Advane. comp. Physiol. Bio chem. 1, 68 (1962a).Google Scholar
  26. Blaschko, H.: In: Enzymes and drug action. Ciba Foundat. Symp., edit. by J. L. Mongar and A. V. S. De Reuck, p. 465 ff. London: Churchill 1962b.Google Scholar
  27. Blaschko, H., and R. Bonney: Spermine oxidase and benzylamine oxidase. Distribution, development and substrate specificity. Proc. roy. Soc. B 156, 268 (1962).Google Scholar
  28. Blaschko, H., E. H. Colhoun and N. Frontali: Occurrence of amine oxidase in an insect, Periplaneta americana L. J. Physiol. (Lond.) 156, 28P (1961).Google Scholar
  29. Blaschko, H., P. J. Friedman, R. Hawes and K. Nilsson: The amine oxidases of mammalian plasma. J. Physiol. (Lond.) 145, 384 (1959).Google Scholar
  30. Blaschko, H., J. M. Hagen and P. Hagen: Mitochondrial enzymes and chromaffin granules. J. Physiol. Lond. 139, 316 (1957).PubMedGoogle Scholar
  31. Blaschko, H., and R. Hawes: Observations on spermine oxidase of mammalian plasma. J. Physiol. (Lond.) 145, 124 (1959).Google Scholar
  32. Blaschko, H., and J. Hawkins: Observations on amine oxidase in cephalopods. J. Physiol. (Lond.) 118, 88 (1952).Google Scholar
  33. Blaschko, H., and K. Hellmann: Pigment formation from tryptamine and 5-hydroxytryptamine. A contribution to the histochemistry of amine oxidase. J. Physiol. (Lond.) 122, 419 (1953).Google Scholar
  34. Blaschko, H., and J. M. Himms: Amine oxidase in the earthworm. J. Physiol. (Lond.) 120, 445 (1953).Google Scholar
  35. Blaschko, H., and J. M. Himms: Enzymic oxidation of amines in decapods. J. exp. Biol. 31, 1 (1954).Google Scholar
  36. Blaschko, H., and D. B. Hope: The oxidation of L-amino-acids in the digestive gland of Mytilus edulis. J. Physiol. (Lond.) 128, 11 P (1955).Google Scholar
  37. Blaschko, H., and D. B. Hope: The oxidation of L-amino acids by Mytilus edulis. Biochem. J. 62, 335 (1956).PubMedGoogle Scholar
  38. Blaschko, H., and D. B. Hope: Observations on the distribution of amine oxidase in invertebrates. Arch. Biochem. 69, 10 (1957).PubMedGoogle Scholar
  39. Blaschko, H., and S. Kurzepa: Potentiation of the responses to histamine by picolylamines. Brit. J. Pharmacol. 19, 544 (1962).PubMedGoogle Scholar
  40. Blaschko, H., and W. G. Levine: A comparative study of hydroxyindole oxidases. Brit. J. Pharmacol. 15, 625 (1960a).PubMedGoogle Scholar
  41. Blaschko, H., and W. G. Levine: Enzymic oxidation of 5-hydroxytryptamine by pig serum. J. Physiol. (Lond.) 154, 599 (1960b).Google Scholar
  42. Blaschko, H., and W. G. Levine: Observations on phenolases. Neuro-Psychopharmacology 2, 435 (1960 c).Google Scholar
  43. Blaschko, H., and A. S. Milton: Oxidation of 5-hydroxytryptamine and related compounds by Mytilus gill plates. Brit. J. Pharmacol. 15, 42 (1960).PubMedGoogle Scholar
  44. Blaschko, H., and F. J. Philpot: Enzymic oxidation of tryptamine derivatives. J. Physiol. (Lond.) 122, 403 (1953).Google Scholar
  45. Blaschko, H., D. Richter and H. Schlossmann: Inactivation of adrenaline. J. Physiol. (Lond.) 90, 1 (1937a).Google Scholar
  46. Blaschko, H., D. Richter and H. Schlossmann: Enzymic oxidation of amines. J. Physiol. (Lond.) 91, 13 P (1937b).Google Scholar
  47. Blaschko, H., D. Richter and H. Schlossmann: The oxidation of adrenaline and other amines. Biochem. J. 31, 2187 (1937c).PubMedGoogle Scholar
  48. Blum, J. J., and N. S. Ling: Oxidation of serotonin and 5-hydroxyindoles during the denaturation of oxyhaemoglobin. Biochem. J. 73, 530 (1959).PubMedGoogle Scholar
  49. Bogdanski, D. F., H. Weissbach and S. Udenfriend: The distribution of serotonin, 5-hydroxytryptophan decarboxylase, and monoamine oxidase in brain. J. Neurochem. 1, 272 (1957).PubMedGoogle Scholar
  50. Brodie, B. B.: Pathways of drug metabolism. J. Pharm. Pharmacol. 8, 1 (1956).PubMedGoogle Scholar
  51. Brown, G. L., and J. S. Gillespie: The output of sympathetic transmitter from the spleen of the cat. J. Physiol. (Lond.) 138, 81 (1957).Google Scholar
  52. Buffoni, F., and H. Blaschko: Studies of a crystalline preparation of the amine oxidase of pig plasma. Biochem. J. 89, 111 P (1963). See also: Proc. Roy. Soc. B 161, 153 (1964).Google Scholar
  53. Burn, J. H., and M. J. Rand: The action of sympathomimetic amines in animals treated with reserpine. J. Physiol. (Lond.) 144, 314 (1958).Google Scholar
  54. Carlisle, D. B.: An indole-alkylamine regulating heart beat in Crustacea. Biochem. J. 63, 32P (1956).Google Scholar
  55. Carlisle, D. B., and K. K. Tiwari: In: Report of the council for 1960/61. J. mar. biol. Ass. U. Kingd. 41, 853 (1961).Google Scholar
  56. Chadwick, B. T., and J. H. Wilkinson: Some aspects of the metabolism of 5-hydroxytryptamine. Biochem. J. 76, 102 (1960).PubMedGoogle Scholar
  57. Colhoun, E. H.: Synthesis of 5-hydroxytryptamine in the American cockroach. Experientia (Basel) 19, 9 (1963).Google Scholar
  58. Cotzias, G. C., and V. P. Dole: Metabolism of amines. II. Mitochondrial localization of monoamine oxidase. Proc. Soc. exp. Biol. (N.Y.) 78, 157 (1951).Google Scholar
  59. Curzon, G., and L. Vallet: The purification of human caeruloplasmin. Biochem. J. 74, 279 (1960).PubMedGoogle Scholar
  60. Davison, A. N.: The physiological role of monoamine oxidase. Physiol. Rev. 38, 729 (1958).PubMedGoogle Scholar
  61. Day, S. M., and J. P. Green: The uptake of amino acids and the synthesis of amines by neoplastic mast cells in culture. J. Physiol. (Lond.) 164, 210 (1962).Google Scholar
  62. Duve, C. De, H. Beaufay, P. Jacques, Y. Rahman-Li, O. Z. Sellinger, R. Wattiaux and S. De Coninck: Intracellular localization of catalase and of some oxidases in rat liver. Biochim. biophys. Acta (Amst.) 40, 186 (1960).Google Scholar
  63. Eberts jr., F. S., and E. G. Daniels: Metabolism of 3-(2-aminobutyl-l-C14) indole acetate (etryptamine acetate) in man. Fed. Proc. 21, 180 (1962).Google Scholar
  64. Elsner, P., O. Hornykiewicz, A. Lindner u. G. Niebauer: Die Polyphenoloxydase-aktivität im mütterlichen und fötalen Blutserum. Wien. klin. Wschr. 46, 938 (1953).Google Scholar
  65. Eriksen, N., G. M. Martin and E. P. Benditt: Oxidation of the indole nucleus of 5-hydroxytryptamine and the formation of pigments: isolation and partial characterization of a dimer of 5-HT. J. biol. Chem. 235, 1662 (1960).PubMedGoogle Scholar
  66. Erspamer, V.: Active substances in the posterior salivary glands of Octopoda. I. Enteraminelike substances. Acta pharmacol. (Kbh.) 4, 213 (1948).Google Scholar
  67. Erspamer, V.: Il sistema cellulare enterocromaffine e l’enteramina. R. C. sci. Farmital. 1, 5 (1954).Google Scholar
  68. Erspamer, V.: Observations on the fate of indolealkylamines in the organism. J. Physiol. (Lond.) 127, 118 (1955).Google Scholar
  69. Erspamer, V.: Some observations on the fate of exogenous 5-hydroxytryptamine (entera-mine) in the rat. J. Physiol. (Lond.) 133, 1 (1956).Google Scholar
  70. Erspamer, V.: Recent research in the field of 5-hydroxytryptamine and related indolealkylamines. Fortschr. Arzneimittelforsch. 3, 151 (1961).PubMedGoogle Scholar
  71. Erspamer, V., and G. Bertaccini: Observations on the antidiuretic action and the fate of 5-hydroxy-DL-tryptophan in the rat organism. Arch. int. Pharmacodyn. 137, 6 (1962).PubMedGoogle Scholar
  72. Erspamer, V., R. Ferrini and A. Glässer: A note on the oxidative deamination of 5-hydroxytryptamine and other indolealkylamines. J. Pharm. Pharmacol. 12, 761 (1960).PubMedGoogle Scholar
  73. Erspamer, V., A. Glässer and M. B. Nobili: The fate of 5-hydroxy-N-acetyltryptophan and 5-acetoxy-N-acetyltryptophan in the rat organism. Arch. Biochem. 93, 673 (1961).PubMedGoogle Scholar
  74. Erspamer, V., A. Glässer, M. B. Nobili, and C. Pasini: The fate of 4-hvdroxytryptophan in the rat organism. Experientia (Basel) 16, 506 (1960).Google Scholar
  75. Erspamer, V., A. Glässer, C. Pasini and G. Stoppani: In vitro decarboxylation of tryptophans by mammalian decarboxylase. Nature (Lond.) 189, 438 (1961).Google Scholar
  76. Erspamer, V., and M. B. Nobili: Observations on the fate of oral 4-hydroxytryptophan in man. Experientia (Basel) 17, 351 (1961).Google Scholar
  77. Erspamer, V., and M. B. Nobili: Observations on the fate of 4-hydroxy-DL-tryptophan in the organism of the rat and man. Arch. int. Pharmacodyn. 137, 24 (1962).PubMedGoogle Scholar
  78. Euw, J. O. v., R. Neher, T. Reichstein, S. A. S. Tait, J. F. Tait and A. Wettstein: “Substanz Z”. Helv. chim. Acta 42, 1817 (1959).Google Scholar
  79. Ewins, A. J., and P. P. Laidlaw: The fate of indole-ethylamine in the organism. Biochem. J. 7, 18 (1913).PubMedGoogle Scholar
  80. Fellman, J. H., T. S. Fujita and C. J. Belber: 2,3-Dihydro-5-hydroxytryptamine. Biochem. Pharmacol. 11, 557 (1962).PubMedGoogle Scholar
  81. Freyburger, W. A., B. E. Graham, M. M. Rapport, P. H. Seay, W. M. Govier, O. F. Swoap and M. J. VAN DER Brook: The pharmacology of 5-hydroxytryptamine (serotonin). J. Pharmacol. exp. Ther. 105, 80 (1952).PubMedGoogle Scholar
  82. Geller, E., S. Elduson and A. Yuwiler: Oxidation of p-phenylenediamine and adrenaline in enzymatic and copper-catalysed reactions. J. Neurochem. 5, 73 (1959).PubMedGoogle Scholar
  83. Gessner, P. K., P. A. Khairallah, W. M. Mcisaac and I. H. Page: The relationship between the metabolic fate and pharmacological actions of serotonin, bufotenine and psilocybin. J. Pharmacol. exp. Ther. 130, 126 (1960).PubMedGoogle Scholar
  84. Glenner, G. G., H. J. Burtner and G. W. Brown: The histochemical demonstration of monoamine oxidase activity by tetrazolium salts. J. Histochem. Cytochem. 5, 591 (1957).PubMedGoogle Scholar
  85. Glenner, G. G., H. Weissbach and B. G. Redfield: The histochemical demonstration of enzymatic activity by a non-enzymatic redox reaction. Reduction of tetrazolium salts by indolyl-3-acetaldehyde. J. Histochem. Cytochem. 8, 258 (1960).PubMedGoogle Scholar
  86. Govier, W. M., B. G. Howes and A. J. Gibbons: The oxidative deamination of serotonin and other 3-(beta-aminoethyl)-indoles by monoamine oxidase and the effects of these compounds on the deamination of tyramine. Science 118, 596 (1953).PubMedGoogle Scholar
  87. Guggenheim, M., u. W. Löffler: Das Schicksal proteinogener Amine im Tierkörper. Biochem. Z. 72, 325 (1916).Google Scholar
  88. Haavaldsen, R.: Transamination of aromatic amino acids in nervous tissue. Nature (Lond.) 196, 577 (1962).Google Scholar
  89. Hagen, P.: The substrate specificity of amine oxidase of mouse mastocytoma. Fed. Proc. 18, 399 (1959).Google Scholar
  90. Hagen, P., and N. Weiner: Enzymic oxidation of pharmacologically active amines. Fed. Proc. 18, 1005 (1959).PubMedGoogle Scholar
  91. Hare, M. L. C.: Tyramine oxidase. I. A new enzyme system in liver. Biochem. J. 22, 968 (1928).PubMedGoogle Scholar
  92. Haverback, B. J., and J. D. Davidson: Serotonin and the gastrointestinal tract. Gastro-enterology 35, 570 (1958).Google Scholar
  93. Hawkins, J.: The localization of amine oxidase in the liver cell. Biochem. J. 50, 577 (1952).PubMedGoogle Scholar
  94. Heim, R.: Les investigations anciennes et récentes propres aux agarics hallucinogènes du Mexique, à leur action et aux substances qui en sont responsables. Actualités pharmacol. 12, 171 (1959).PubMedGoogle Scholar
  95. Hellmann, K.: Cholinesterase and amine oxidase in the skin: a histochemical investigation. J. Physiol. (Lond.) 129, 454 (1955).Google Scholar
  96. Hertting, G., J. Axelrod, I. J. Kopin and L. G. Whitby: Lack of uptake of catecholamines after chronic denervation of sympathetic nerves. Nature (Lond.) 189, 66 (1961).Google Scholar
  97. Hofmann, A., R. Heim, A. Brack, H. Kobel, A. Frey, H. Ott, T. Petrzilka u. F. Troxler: Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helv. chim. Acta 42, 1557 (1959).Google Scholar
  98. Holter, H.: In: Enzymes and drug action. Ciba Foundat. Symp., edit. by J. L. Mongar and A. V. S. De Reuck, p. 467. London: Churchill 1962.Google Scholar
  99. Holtz, P., u. H. Büchsel: Über die Substratspezifität und-affinität der d-Aminosäuren-oxydase und Aminoxydase. Hoppe-Seylers Z. physiol. Chem. 272, 201 (1942).Google Scholar
  100. Hope, D. B., and A. D. Smith: Distribution and activity of monoamine oxidase in mouse tissues. Biochem. J. 74, 101 (1960).PubMedGoogle Scholar
  101. Hobita, A.: The influence of pH on serotonin metabolism by rat tissue homogenates. Biochem. Pharmacol. 11, 147 (1962).Google Scholar
  102. Hobita, A., and L. J. Weber: The enzymic dephosphorylation and oxidation of psilocybin and psilocin by mammalian tissue homogenates. Biochem. Pharmacol. 7, 47 (1961).Google Scholar
  103. Hobita, A., and L. J. Weber: Dephosphorylation of psilocybin in the intact mouse. Toxicol. appl. Pharmacol. 4, 730 (1962).Google Scholar
  104. Jacoby, G. A., and B. La Du: Nonspecificity of tyrosine transaminase: an explanation for the simultaneous induction of tyrosine, phenylalanine and tryptophan transaminase activities in rat liver. Biochem. biophys. Res. Commun. 8, 352 (1962).PubMedGoogle Scholar
  105. Jepson, J. B., S. Udenfriend and P. Zaltzman: The enzymic conversion of tryptamine to 6-hydroxytryptamine. Fed. Proc. 18, 254 (1959).Google Scholar
  106. Kärki, N., R. Kuntzman and B. B. Brodie: Storage, synthesis and metabolism of mono-amines in the developing brain. J. Neurochem. 9, 53 (1962).PubMedGoogle Scholar
  107. Kenten, R. H., and P. J. G. Mann: The oxidation of amines by extracts of pea seedlings. Biochem. J. 50, 360 (1952).PubMedGoogle Scholar
  108. Koelle, G. B., and A. De T. Valk Jr.: Physiological implications of the histochemical localization of amine oxidase. J. Physiol. (Lond.) 126, 434 (1954).Google Scholar
  109. Kohn, H. I.: Tyramine oxidase. Biochem. J. 31, 1693 (1937).PubMedGoogle Scholar
  110. Kopin, I. J., C. M. B. Pare, J. Axelrod and H. Weissbach: 6-Hydroxylation the major metabolic pathway for melatonin. Biochim. biophys. Acta (Amst.) 40, 377 (1960).Google Scholar
  111. Kopin, I. J., C. M. B. Pare, J. Axelrod and H. Weissbach: The fate of melatonin in animals. J. biol. Chem. 236, 3072 (1961).PubMedGoogle Scholar
  112. Kveder, S., S. Iskrić and D. Keglević: 5-Hydroxytryptophol: a metabolite of 5-hydroxy-tryptamine in rats. Biochem. J. 85, 447 (1962).PubMedGoogle Scholar
  113. Langemann, H.: Enzymes and their substrates in the adrenal gland of the ox. Brit. J. Pharmacol. 6, 318 (1951).PubMedGoogle Scholar
  114. Langemann, H., u. J. Kägi: Oxytryptamin-und Oxyindolessigsäurebestimmungen bei einem Fall von Carcinoidsyndrom, nebst einigen anderen Untersuchungen über Oxytryptamine. Klin. Wschr. 34, 237 (1956).PubMedGoogle Scholar
  115. Lembeck, F.: 5-Hydroxytryptamine in a carcinoid tumour. Nature (Lond.) 172, 910 (1953).Google Scholar
  116. Lerner, A. B., and J. D. Case: Melatonin. Fed. Proc. 19, 590 (1960).Google Scholar
  117. Levine, W. G.: Observations on hydroxyindole oxidases. Biochem. J. 76, 43 P (1960).Google Scholar
  118. Märki, F., J. Axelrod and B. Witkop: Catecholamines and methyltransferases in the South American toad (Bufo marinus). Biochim. biophys. Acta (Amst.) 58, 367 (1962).Google Scholar
  119. Mann, P. J. G.: Purification and properties of the amine oxidase of pea seedlings. Biochem. J. 59, 609 (1955).PubMedGoogle Scholar
  120. Mann, P. J. G.: Further purification and properties of the amine oxidase of pea seedlings. Biochem. J. 79, 623 (1961).PubMedGoogle Scholar
  121. Mansour, T. E.: Effect of serotonin on phenol oxidase from the liver fluke Fasdola hepatica and from other sources. Biochim. biophys. Acta (Amst.) 30, 492 (1958).Google Scholar
  122. Martin, G. M., E. P. Benditt and N. Eriksen: Enzymic oxidation of the indole nucleus of 5-hydroxytryptamine: properties of an enzyme in human serum and of the products of oxidation. Arch. Biochem. 90, 208 (1960).PubMedGoogle Scholar
  123. Martin, G. M., N. Eriksen and E. P. Benditt: Oxidation of 5-hydroxytryptamine by human serum and its inhibition by iproniazid. Fed. Proc. 17, 447 (1958).Google Scholar
  124. Mcisaac., W. M., S. Kveder and I. H. Page: The metabolism of 5-β-14C-methoxy-trypt-amine. Biochem. J. 76, 30 P (1960).Google Scholar
  125. Mcisaac., W. M., and I. H. Page: The metabolism of serotonin (5-hydroxytryptamine). J. biol. Chem. 234, 858 (1959).PubMedGoogle Scholar
  126. Nakai, K.: Serotonin metabolism in herbivores. Nature (Lond.) 181, 1734 (1958).Google Scholar
  127. Nakajima, H., et J. Thuillier: Inactivation de la sérotonine par la ceruloplasmine. C.R. Soc. Biol. (Paris) 152, 270 (1958).Google Scholar
  128. Ogston, A. G.: Removal of acetylcholine from a limited volume by diffusion. J. Physiol. (Lond.) 128, 222 (1955).Google Scholar
  129. Ozake, M., H. Weissbach, A. Ozaki, B. Witkop and S. Udenfriend: Monoamine oxidase inhibitors and procedures for their evaluation in vivo and in vitro. J. med. pharm. Chem. 2, 591 (1960).Google Scholar
  130. Page, I. H., A. C. Corcoran, S. Udenfriend, A. Sjoerdsma and H. Weissbach: Argentaf-finoma as endocrine tumour. Lancet 1955 I, 198.Google Scholar
  131. Peart, W. S., K. A. Porter, J. I. S. Robertson, M. Sandler and E. Baldock: Carcinoid syndrome due to pancreatic-duct neoplasm secreting 5-hydroxytryptophan and 5-hydroxytryptamine. Lancet 1963 I, 239.Google Scholar
  132. Pernow, B., and J. Waldenström: Paroxysmal flushing and other symptoms caused by 5-hydroxytryptamine and histamine in patients with malignant tumours. Lancet 1954 II, 951.Google Scholar
  133. Porter, C. C., D. C. Titus, B. E. Sanders and E. V. C. Smith: Oxidation of serotonin in the presence of ceruloplasmin. Science 126, 1014 (1957).PubMedGoogle Scholar
  134. Pugh, C. E. M., and J. H. Quastel: Oxidation of aliphatic amines by brain and other tissues. Biochem. J. 31, 286 (1937a).PubMedGoogle Scholar
  135. Pugh, C. E. M., and J. H. Quastel: Oxidation of amines by animal tissues. Biochem. J. 31, 2306 (1937 b).PubMedGoogle Scholar
  136. Rodnight, R.: Separation and characterization of urinary indoles resembling 5-hydroxytryptamine and tryptamine. Biochem. J. 64, 21 (1956).Google Scholar
  137. Rodnight, R.: Carbon monoxide saturation and the recovery of 5-hydroxytryptamine from whole blood. J. Physiol. (Lond.) 141, 10P (1958).Google Scholar
  138. Sandler, M., R. G. Spector, C. R. J. Ruthven and A. N. Davison: The occurrence and adaptive increase of 5-hydroxytryptophan-α-oxoglutarate transaminase. Biochem. J. 74, 42P (1960).Google Scholar
  139. Sankar, D. V. S.: Enzymatic activity of ceruloplasmin. Fed. Proc. 18, 441 (1959).Google Scholar
  140. Scheinberg, I.H., and I. Sternlieb: Copper metabolism. Pharmacol. Rev. 12, 355 (1960).PubMedGoogle Scholar
  141. Schlossberger, H. G., u. H. Kuch: Synthese des 5,6-Dihydroxy-tryptamins. Chem. Ber. 93, 1318 (1960).Google Scholar
  142. Seiden, L. S., and J. Westley: Partial purification of monoamine oxidase from rat brain. Biochim. biophys. Acta (Amst.) 58, 363 (1962).Google Scholar
  143. Shimizu, N., and N. Morikava: Histochemical study of monoamine oxidase in the developing rat brain. Nature (Lond.) 184, 650 (1959).Google Scholar
  144. Shimizu, N., N. Morikava and M. Okada: Histochemical studies of monoamine oxidase of the brain of rodents. Z. Zeilforsch. 49, 389 (1959).Google Scholar
  145. Sjoerdsma, A., H. Weissbach and S. Udenfriend: Simple test for diagnosis of metastatic carcinoid (argentaffinoma). J. Amer. med. Ass. 159, 397 (1955).Google Scholar
  146. Smith, B.: Monoamine oxidase in the pineal gland, neurohypophysis and brain of the albino rat. J. Anat. (Lond.) 97, 1 (1963).Google Scholar
  147. Spencer, R. P., and N. Zamchek: Alternate metabolic fate of 5-hydroxytryptophan. Biochem. biophys. Res. Commun. 3, 386 (1960).Google Scholar
  148. Strömblad, B. C. R.: Supersensitivity and aminé oxidase activity in denervated salivary glands. Acta physiol. scand. 36, 137 (1956).PubMedGoogle Scholar
  149. Strömblad, B. C. R.: Observations on aminé oxidase in human salivary glands. J. Physiol. (Lond.) 147, 639 (1959).Google Scholar
  150. Szara, S.: 6-Hydroxylation: an important metabolic route for α-methyltryptamine. Experientia (Basel) 17, 76 (1961).Google Scholar
  151. Szara, S., and J. Axelrod: Hydroxylation and N-demethylation of N,N-dimethyltryptamine. Experientia (Basel) 15, 216 (1959).Google Scholar
  152. Szara, S., E. Hearst and F. Putney: Metabolism of hallucinogenic tryptamine derivatives. Fed. Proc. 19, 23 (1960).Google Scholar
  153. Szara, S., and F. Putney: 6-Hydroxylation of tryptamine and derivatives: the enzymatic process. Fed. Proc. 20, 172 (1961).Google Scholar
  154. Titus, E. O., and S. Udenfriend: Metabolism of 5-hydroxytryptamine (serotonin). Fed. Proc. 13, 411 (1954).Google Scholar
  155. Twarog, B. M., and I. H. Page: Serotonin content of some mammalian tissues and urine and methods for its determination. Amer. J. Physiol. 175, 157 (1953).PubMedGoogle Scholar
  156. Udenfriend, S., E. Titus and H. Weissbach: Identification of 5-hydroxy-3-indoleacetic acid in normal urine and a method for its assay. J. biol. Chem. 216, 499 (1955).PubMedGoogle Scholar
  157. Udenfriend, S., E. Titus, H. Weissbach and H. E. Peterson: Biogenisis and metabolism of 5-hydroxyindole compounds. J. biol. Chem. 219, 335 (1956).PubMedGoogle Scholar
  158. Udenfriend, S., H. Weissbach and A. Sjoerdsma: Studies on tryptophan and serotonin in patients with malignant carcinoids. Science 123, 669 (1956).PubMedGoogle Scholar
  159. Vane, J. R.: The relative activities of some tryptamine analogues on the isolated rat stomach strip preparation. Brit. J. Pharmacol. 14, 87 (1959).PubMedGoogle Scholar
  160. Vialli, M.: L’istochimica e i problemi biologici riguardanti la 5-idrossitriptamina (enteramina-serotonina). Riv. Anat. pat. 21, 392 (1962).PubMedGoogle Scholar
  161. Weissbach, H., W. King, A. Sjoerdsma and S. Udenfriend: Formation of indole-3-acetic acid and tryptamine in animals. J. biol. Chem. 234, 81 (1959).PubMedGoogle Scholar
  162. Weissbach, H., W. Lovenberg, B. G. Redfield and S. Udenfriend: In vivo metabolism of serotonin and tryptamine: effect of monoamine oxidase inhibition. J. Pharmacol. exp. Ther. 131, 26 (1961).PubMedGoogle Scholar
  163. Weissbach, H., B. G. Redfield and J. Axelrod: Biosynthesis of melatonin: enzymic conversion of serotonin to N-acetylserotonin. Biochim. biophys. Acta (Amst.) 43, 352 (1960).Google Scholar
  164. Weissbach, H., B. G. Redfield, and S. Udenfriend: Soluble monoamine oxidase; its properties and actions on serotonin. J. biol. Chem. 229, 953 (1957).PubMedGoogle Scholar
  165. Weissbach, H., B. G. Redfield, and S. Udenfriend: Serotonin-O-glucuronide; an alternate route of serotonin metabolism. Fed. Proc. 17, 418 (1958).Google Scholar
  166. Welsh, J. H., and M. Moorhead: The quantitative distribution of 5-hydroxytryptamine in the invertebrates, especially in their nervous system. J. Neurochem. 6, 146 (1960).Google Scholar
  167. Werle, E., u. E.V. Pechmann: Über die Diamin-Oxydase der Pflanzen und ihre adaptive Bildung durch Bakterien. Justus Liebigs Ann. Chem. 562, 44 (1949).Google Scholar
  168. Werle, E., I. Trautschold u. D. Aures: Reinigung und Charakterisierung der Diamin-Oxydase aus Erbsen. Hoppe-Seylers Z. physiol. Chem. 326, 200 (1961).PubMedGoogle Scholar
  169. Williams, E. D., and M. Sandler: The classification of carcinoid tumours. Lancet 1963 I, 238.Google Scholar
  170. Witt, P. N., L. Brettschneider and A. P. Boris: Sensitivity to d-amphetamine in spiders after iproniazid and imipramine. J. Pharmacol. exp. Ther. 132, 183 (1961).PubMedGoogle Scholar
  171. Yamada, H., and K. T. Yasunobu: Monoamine oxidase. I. Purification, crystallization, and properties of plasma monoamine oxidase. J. biol. Chem. 237, 1511 (1962).PubMedGoogle Scholar
  172. Zarafonetis, C. J. D., and J. P. Kalas: Serotonin degradation by ceruloplasmin and its inhibition by isoniazid and iproniazid. Amer. J. med. Sci. 239, 203 (1960).PubMedGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1966

Authors and Affiliations

  • Hermann Blaschko
  • Walter G. Levine

There are no affiliations available

Personalised recommendations