Advertisement

Variational Methods for BEM

  • W. L. Wendland
Conference paper

Abstract

As we all know, variational methods and formulations are basic for a big variety of problems in mechanics [12]. Their exploitation in connection with finite element approximation has created some of the most powerful algorithms in computational mechanics, the finite element methods.

Keywords

Boundary Element Bilinear Form Boundary Element Method Boundary Integral Equation Strong Ellipticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agranovich M.S., 1977, “Spectral properties of diffraction problems. In: The General Method of Natural Vibrations in Diffraction Theory (Voitovic N.N., Katzenellenbaum B.Z., Sivov A.N., Eds.), Izdat. Nauka, Moscow, 289–416.Google Scholar
  2. 2.
    Arnold D.N., Wendland W.L., 1983, “On the asymptotic convergence of collocation methods”. Math. Comp., 41, 349–381.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arnold D.N., Wendland W.L., 1985, “The convergence of spline collocation for strongly elliptic equations on curves”. Numer. Math., 47, 317–341.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Brezzi F., Johnson C., 1979, “On the coupling of boundary integral and finite element methods”. Calcolo, 16, 189–201.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Costabel M., 1987, “Principles of boundary element methods”. Computer Physics Report, 6, 243–274.MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Costabel M., 1988, “Boundary integral operators on Lipschitz domains: Elementary results”. SIAM J. Math. Anal., 19, 613–626.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Costabel M., Penzel F., Schneider R., 1990, “Error analysis of boundary element collocation for a screen problem in ℝ3. (THD-Preprint, TH Darmstadt).Google Scholar
  8. 8.
    Costabel M., Stephan E.P., 1990, “Coupling of finite and boundary element methods for an elastoplastic interface problem”. SIAM J. Numer. Anal., 27.Google Scholar
  9. 9.
    Costabel M., Wendland W.L., 1986, “Strong Ellipticity of boundary integral operators”, J. für die reine und angewandte Mathematik 372, 34–63.MathSciNetMATHGoogle Scholar
  10. 10.
    Dieudonné J., 1978, Elemént d’Analyse. VIII, Gauthier-Villars, Paris.Google Scholar
  11. 11.
    Fichera G., 1961, “Linear elliptic equations of higher order in two independent variables and singular integral equations”. In: Proc. Conf. Partial Differential Equations in Continuum Mechanics (Langer R.E., Ed.), University Press, Wisconsin, Madison, 55–80.Google Scholar
  12. 12.
    Fichera G., 1972, “Existence theorems in elasticity”. In: Handbuch der Physik, vol. VIa/2, Festkörpermechanik II, Springer-Verlag, Berlin, 347–389.Google Scholar
  13. 13.
    Fichera G., 1972, “Boundary value problems of elasticity with unilateral constraints”. In: Handbuch der Physik, vol. VIa/2, Festkörpermechanik II, Springer-Verlag, Berlin.Google Scholar
  14. 14.
    Fichera G., Rizzi P., 1976, “The single layer potential approach of boundary value problems for elliptic equations”. In: Lecutre Notes in Mathematics, 561, Springer-Verlag, Berlin, 39–50.Google Scholar
  15. 15.
    Flassig U., 1984, “Das 2. Fundamentalproblem der ebenen Elastizität”. Diplom Thesis, Technical University Darmstadt.Google Scholar
  16. 16.
    Gatica G.N., Hsiao G.C., 1989, “The coupling of boundary element and finite element methods for a nonlinear exterior boundary value problem”. Zeitschr. Analysis Anwendungen, 28, 377–387.MathSciNetGoogle Scholar
  17. 17.
    Grannell J.J., 1987, “On simplified hybrid methods for coupling of finite elements and boundary elements”. In: Boundary Elements IX, vol. 1, (Brebbia C.A., Kuhn G., Wendland W.L., Eds.), Springer-Verlag, Berlin, 447–460.Google Scholar
  18. 18.
    Hagen R., Silbermann B., 1988, “On the stability of the qualocation method”. Seminar Anal. Operator Equat. and Numer. Anal. Karl Weierstrass Inst. for Mathematics, Berlin, 43–52.Google Scholar
  19. 19.
    Houde Han, 1988, “A new class of variational formulations for the coupling of finite and boundary element methods”. Preprint Univ. Maryland, College Park, USA.Google Scholar
  20. 20.
    Hsiao G.C., Schnack E., Wendland W.L., “A hybrid coupled finite-boundary element method”. In preparation.Google Scholar
  21. 21.
    Hsiao G.C., Wendland W.L., 1977, “A finite element method for some integral equations of the first kind”. J. Math. Anal. Appl., 58, 449–481.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Hsiao G.C., Wendland W.L., “Domain decomposition in boundary element methods”. In: Proc. Domain Decomposition Conf., Moscow, 1990 SIAM. To appear.Google Scholar
  23. 23.
    Johnson C., Nedelec J.C., 1980, “On Coupling of boundary integral and finite element methods”. Math. Comp., 35, 1063–1079.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Kawohl B., 1980, “On nonlinear mixed boundary value problems for second order elliptic differential equations on domains with corners”. Proc. Royal Soc., Edinburgh, 87A, 35–51.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kellog O.D., 1929, Foundations of Potential Theory, New York.Google Scholar
  26. 26.
    Khoromskij B.N., Mazurkevich G.E., Zhidkov E.P., 1990, “Domain decomposition method for magnetostatics nonlinear problems in combined formulations”. Sov. J. Numer. Anal. Math. Modelling, 5, 121–165.Google Scholar
  27. 27.
    Kupradze V.D., Gegelia T.G., Basheleishvili M.O., Burchuladze T.V., 1979, Three-Dimensional Problems of the Mathematical Theory of elasticity and Thermoelasticity. North-Holland, Amsterdam.Google Scholar
  28. 28.
    Lamp U., Schleicher K.-T., Wendland W.L., 1985, “The fast Fourier transform and the numerical solution of one-dimensional boundary integral equations”. Numer. Math., 47, 15–38.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Lions J.L., Magenes E., 1972, Non-Homogeneous Boundary Value Problems and Applications. Springer-Verlag, Berlin.Google Scholar
  30. 30.
    Maue A.W., 1949, “Über die Formulierung eines allgemeinen Diffraktionsproblems mit Hilfe einer Integralgleichung”. Zeitschr. f. Physik, 126, 601–618.MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Mikhlin S.G., Prössdorf S., 1986, Singular Integral Operators, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  32. 32.
    Nedelec J.C., 1977, “Approximation des équations intégrales en mécanique et en physique”. Cours de l’Ecole d’Eté CEA-IRIA-EDF.Google Scholar
  33. 33.
    Nedelec J.C., 1978, “Approximation par double couche du probléme de Neumann extérieur”, C.R.A.S., Sec. A, 286, 103–106.MathSciNetMATHGoogle Scholar
  34. 34.
    Nedelec J.C., Planchard J., 1973, Une methode variationeile d’elelements finis pour la résolution numérique d’un problem extérieur dans ℝ3. RAIRO Anal. Numer., 7, 105–129.MathSciNetGoogle Scholar
  35. 35.
    Polizzotto C., “A symmetric-definite BEM formulation for the elasto-plastic rate problem”. In: Boundary Elements IX, vol. 2, (Brebbia C.A., Kuhn G., Wendland W.L., Eds.), Springer-Verlag, Berlin, 315–337.Google Scholar
  36. 36.
    Prössdorf S., Schmidt G., 1981, “A finite element collocation method for singular integral equations”. Math. Nachr., 100, 33–60.MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Prössdorf S., Schneider R., “Spline approximation methods for multidimensional periodic pseudo-differential equations”. Integral Equations and Operator Theory, to appear.Google Scholar
  38. 38.
    Rjasanov S., 1991, “Vorkonditionierte iterative Auflösung von Randelement-gleichungen für die Dirichlet-Aufgabe”. Doctoral B Thesis, Techn. Univ. Chemnitz.Google Scholar
  39. 39.
    Saranen J., 1988, “The convergence of even degree spline collocation solution for potential problems in smooth domains of the plane”. Numer. Math. 53, 499–512.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Saranen J., Wendland W.L., 1985, “On the asymptotic convergence of collocation methods with spline functions of even dregree”. Math. Comp., 45, 91–108.MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Schmitz H., Schneider G., “Boundary element solution of the Dirchlet-Signorini problem by a penalty method”. Applicable Analysis, to appear.Google Scholar
  42. 42.
    Schmitz H., Schneider G., Wendland W.L., “Boundary element methods for problems involving unilateral boundary conditions”. In: Nonlinear Computational Mechanics, State of the Art. Springer-Verlag, Berlin, to appear.Google Scholar
  43. 43.
    Schneider R., 1989, “Stability of a spline collocation method for strongly elliptic multidimensional singular integral equations”. Preprint 1272, Techn. Univ. Darmstadt, to appear.Google Scholar
  44. 44.
    Silbermann B., 1989, “Symbol constructions and numerical analysis”, Preprint Techn. Univ. Chemnitz, to appear.Google Scholar
  45. 45.
    Sloan I.H., 1988, “A quadrature-based approach to improving the collocation method”. Numer. Math., 54, 41–56.MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Sloan I.H., Wendland W.L., 1989, “A quadrature-based approach to improving the collocation method for splines of even degree”. Zeitschr. Analysis Anw., 8, 361–376.MathSciNetMATHGoogle Scholar
  47. 47.
    Spann W., 1989, “Fehlerabschätzungen zur Randelementmethode beim Signorini-Problem für die Laplace-Gleichung”. Doctoral Thesis, Univ. München.Google Scholar
  48. 48.
    Stummel F., 1969, “Rand-und Eigenwertaufgab en in Sobolewschen Räumen”. Lecture Notes in Mathematics, 102, Springer-Verlag, Berlin.Google Scholar
  49. 49.
    Trefftz E., 1927, “Ein Gegenstück zum Ritzschen Verfahren”. In: Verhandlungen d. 2. Intern. Kongress f. techn. Mechanik, Zürich, 1926, 131–138.Google Scholar
  50. 50.
    Wendland W.L., 1987, “Strongly elliptic boundary integral equations”. In: The State of the Art in Numerical Analysis (Iserles A., Powell M., Eds.), 511–561, Clarendon Press, Oxford.Google Scholar
  51. 51.
    Wendland W.L., 1988, “On asymptotic error estimates for combined boundary element methods and finite element methods”. In: Finite Element and Boundary Element Techniques from Mathematical and Engineering Point of View (Stein E., Wendland W.L., Eds.). CISM Courses and Lectures, 301, Springer-Verlag, Vienna.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • W. L. Wendland
    • 1
  1. 1.University of StuttgartGermany

Personalised recommendations